Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 10(2): e0115828, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25706559

RESUMEN

Release of endogenous damage associated molecular patterns (DAMPs), including members of the S100 family, are associated with infection, cellular stress, tissue damage and cancer. The extracellular functions of this family of calcium binding proteins, particularly S100A8, S100A9 and S100A12, are being delineated. They appear to mediate their functions via receptor for advanced glycation endproducts (RAGE) or TLR4, but there remains considerable uncertainty over the relative physiological roles of these DAMPs and their pattern recognition receptors. In this study, we surveyed the capacity of S100 proteins to induce proinflammatory cytokines and cell migration, and the contribution RAGE and TLR4 to mediate these responses in vitro. Using adenoviral delivery of murine S100A9, we also examined the potential for S100A9 homodimers to trigger lung inflammation in vivo. S100A8, S100A9 and S100A12, but not the S100A8/A9 heterodimer, induced modest levels of TLR4-mediated cytokine production from human PBMC. In contrast, for most S100s including S100A9, RAGE blockade inhibited S100-mediated cell migration of THP1 cells and major leukocyte populations, whereas TLR4-blockade had no effect. Intranasal administration of murine S100A9 adenovirus induced a specific, time-dependent predominately macrophage infiltration that coincided with elevated S100A9 levels and proinflammatory cytokines in the BAL fluid. Inflammatory cytokines were markedly ablated in the TLR4-defective mice, but unexpectedly the loss of TLR4 signaling or RAGE-deficiency did not appreciably impact the S100A9-mediated lung pathology or the inflammatory cell infiltrate in the alveolar space. These data demonstrate that physiological levels of S100A9 homodimers can trigger an inflammatory response in vivo, and despite the capacity of RAGE and TLR4 blockade to inhibit responses in vitro, the response is predominately independent of both these receptors.


Asunto(s)
Calgranulina B/farmacología , Movimiento Celular/fisiología , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Humanos , Inflamación/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Ratones , Ratones Noqueados , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor Toll-Like 4/metabolismo
2.
J Gen Virol ; 94(Pt 8): 1691-1700, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23559480

RESUMEN

Human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infection. Infection is critically dependent on the RSV fusion (F) protein, which mediates fusion between the viral envelope and airway epithelial cells. The F protein is also expressed on infected cells and is responsible for fusion of infected cells with adjacent cells, resulting in the formation of multinucleate syncytia. The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor that is constitutively highly expressed by type I alveolar epithelial cells. Here, we report that RAGE protected HEK cells from RSV-induced cell death and reduced viral titres in vitro. RAGE appeared to interact directly with the F protein, but, rather than inhibiting RSV entry into host cells, virus replication and budding, membrane-expressed RAGE or soluble RAGE blocked F-protein-mediated syncytium formation and sloughing. These data indicate that RAGE may contribute to protecting the lower airways from RSV by inhibiting the formation of syncytia, viral spread, epithelial damage and airway obstruction.


Asunto(s)
Células Epiteliales/virología , Células Gigantes/virología , Interacciones Huésped-Patógeno , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Virus Sincitial Respiratorio Humano/patogenicidad , Proteínas Virales de Fusión/metabolismo , Células Cultivadas , Humanos
3.
J Pharmacol Exp Ther ; 335(1): 213-22, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20605905

RESUMEN

The pan B-cell surface antigen CD19 is an attractive target for therapeutic monoclonal antibody (mAb) approaches. We have generated a new afucosylated anti-human (hu)CD19 mAb, MEDI-551, with increased affinity to human FcγRIIIA and mouse FcγRIV and enhanced antibody-dependent cellular cytotoxicity (ADCC). During in vitro ADCC assays with B-cell lines, MEDI-551 is effective at much lower mAb concentrations than the fucosylated parental mAb anti-CD19-2. Furthermore, the afucosylated CD19 mAb MEDI-551 depleted B cells from normal donor peripheral blood mononuclear cell samples in an autologous ADCC assay, as well as blood and tissue B cells in human CD19/CD20 double transgenic (Tg) mice at lower concentrations than that of the positive control mAb rituximab. In huCD19/CD20 Tg mice, both macrophage-mediated phagocytosis and complement-dependent cytotoxicity contribute to depletion with rituximab; MEDI-551 did not require complement for maximal B-cell depletion. Furthermore, extended B-cell depletion from the blood and spleen was achieved with MEDI-551, which is probably explained by bone marrow B-cell depletion in huCD19/CD20 Tg mice relative to the control mAb rituximab. In summary, MEDI-551 has potent B-cell-depleting activity in vitro and in vivo and may be a promising new approach for the treatment of B-cell malignancies and autoimmune diseases.


Asunto(s)
Antígenos CD19/inmunología , Linfocitos B/fisiología , Animales , Anticuerpos Bloqueadores/farmacología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales de Origen Murino , Citotoxicidad Celular Dependiente de Anticuerpos , Antígenos CD19/genética , Proliferación Celular/efectos de los fármacos , Fucosa/química , Humanos , Inmunoglobulina G/inmunología , Ratones , Ratones Transgénicos , Ingeniería de Proteínas , Rituximab
4.
Annu Rev Immunol ; 28: 367-88, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20192808

RESUMEN

The immune system has evolved to respond not only to pathogens, but also to signals released from dying cells. Cell death through necrosis induces inflammation, whereas apoptotic cell death provides an important signal for tolerance induction. High mobility group box 1 (HMGB1) is a DNA-binding nuclear protein, released actively following cytokine stimulation as well as passively during cell death; it is the prototypic damage-associated molecular pattern (DAMP) molecule and has been implicated in several inflammatory disorders. HMGB1 can associate with other molecules, including TLR ligands and cytokines, and activates cells through the differential engagement of multiple surface receptors including TLR2, TLR4, and RAGE. RAGE is a multiligand receptor that binds structurally diverse molecules, including not only HMGB1, but also S100 family members and amyloid-beta. RAGE activation has been implicated in sterile inflammation as well as in cancer, diabetes, and Alzheimer's disease. While HMGB1 through interactions with TLRs may also be important, this review focuses on the role of the HMGB1-RAGE axis in inflammation and cancer.


Asunto(s)
Proteína HMGB1/inmunología , Inflamación/inmunología , Neoplasias/inmunología , Receptores Inmunológicos/inmunología , Animales , Proteína HMGB1/química , Humanos , Inflamación/metabolismo , Ligandos , Neoplasias/metabolismo , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/metabolismo , Transducción de Señal
5.
Cell Microbiol ; 8(9): 1488-503, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16922867

RESUMEN

Enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) both utilize type III secretion systems that translocate the effector protein Tir into the plasma membrane of mammalian cells in order to stimulate localized actin assembly into 'pedestals'. The Tir molecule that EPEC delivers is phosphorylated within its C-terminus on tyrosine-474, and a clustered 12-residue phosphopeptide encompassing this residue initiates an efficient signalling cascade that triggers actin polymerization. In addition to Y474, tyrosine-454 of EPEC Tir is phosphorylated, although inefficiently, and promotes actin polymerization at low levels. In contrast to EPEC Tir, EHEC Tir lacks Y474 and triggers pedestal formation in a phosphotyrosine-independent manner by interacting with an additional effector protein, EspF(U). To identify EHEC Tir sequences that regulate localized actin assembly, we circumvented the strict requirements for type III translocation and directly expressed Tir derivatives in mammalian cells by transfection. Infection of Tir-expressing cells with a Tir-deficient EHEC strain demonstrated that ectopically expressed Tir localizes to the plasma membrane, is modified by mammalian serine-threonine kinases and is fully functional for actin pedestal formation. Removal of portions of the cytoplasmic N-terminus of Tir resulted in the generation of abnormally long pedestals, indicating that this region of EHEC Tir influences pedestal length. In the presence of the entire N-terminal domain, a 12-residue peptide from the C-terminus of EHEC Tir is both necessary and sufficient to recruit EspF(U) and initiate actin pedestal formation. This peptide encompasses the portion of EHEC Tir analogous to the EPEC Tir-Y454 region and is present within the Tir molecules of all pedestal-forming bacteria, suggesting that this sequence harbours a conserved signalling function.


Asunto(s)
Actinas/metabolismo , Proteínas Portadoras/metabolismo , Escherichia coli O157/genética , Proteínas de Escherichia coli/metabolismo , Receptores de Superficie Celular/metabolismo , Citoesqueleto de Actina/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Membrana Celular/metabolismo , Escherichia coli O157/crecimiento & desarrollo , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Prueba de Complementación Genética , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Microscopía Fluorescente/métodos , Modelos Genéticos , Mutación/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/fisiología , Fosforilación , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Homología de Secuencia de Aminoácido
6.
Proc Natl Acad Sci U S A ; 103(24): 9196-201, 2006 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-16757566

RESUMEN

PKCepsilon has been shown to play a key role in the effect of the Gram-negative bacterial product LPS; however, the target for PKCepsilon in LPS signaling is unknown. LPS signaling is mediated by Toll-like receptor 4, which uses four adapter proteins, MyD88, MyD88 adapter-like (Mal), Toll/IL-1R domain-containing adapter inducing IFN-beta (Trif), and Trif-related adapter molecule (TRAM). Here we show that TRAM is transiently phosphorylated by PKCepsilon on serine-16 in an LPS-dependent manner. Activation of IFN regulatory factor 3 and induction of the chemokine RANTES, which are both TRAM-dependent, were attenuated in PKCepsilon-deficient cells. TRAMS16A is inactive when overexpressed and is attenuated in its ability to reconstitute signaling in TRAM-deficient cells. We have therefore uncovered a key process in Toll-like receptor 4 signaling, identifying TRAM as the target for PKCepsilon.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Isoenzimas/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Receptores de Interleucina/metabolismo , Transducción de Señal/fisiología , Receptor Toll-Like 4/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Membrana Celular/metabolismo , Células Cultivadas , Fibroblastos/citología , Fibroblastos/fisiología , Humanos , Isoenzimas/genética , Lipopolisacáridos/metabolismo , Ratones , Ratones Noqueados , Fosforilación , Proteína Quinasa C-epsilon/genética , Receptores de Interleucina/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Receptor Toll-Like 4/genética
7.
Proc Natl Acad Sci U S A ; 103(16): 6299-304, 2006 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-16603631

RESUMEN

TRIF-related adaptor molecule (TRAM) is the fourth Toll/IL-1 resistance domain-containing adaptor to be described that participates in Toll-like receptor (TLR) signaling. TRAM functions exclusively in the TLR4 pathway. Here we show by confocal microscopy that TRAM is localized in the plasma membrane and the Golgi apparatus, where it colocalizes with TLR4. Membrane localization of TRAM is the result of myristoylation because mutation of a predicted myristoylation site in TRAM (TRAM-G2A) brought about dissociation of TRAM from the membrane and its relocation to the cytosol. Further, TRAM, but not TRAM-G2A, was radiolabeled with [3H]myristate in vivo. Unlike wild-type TRAM, overexpression of TRAM-G2A failed to elicit either IFN regulatory factor 3 or NF-kappaB signaling. Moreover, TRAM-G2A was unable to reconstitute LPS responses in bone marrow-derived macrophages from TRAM-deficient mice. These observations provide clear evidence that the myristoylation of TRAM targets it to the plasma membrane, where it is essential for LPS responses through the TLR4 signal transduction pathway, and suggest a hitherto unappreciated manner in which LPS responses can be regulated.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Macrófagos/inmunología , Receptor Toll-Like 4/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/análisis , Proteínas Adaptadoras del Transporte Vesicular/genética , Secuencia de Aminoácidos , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Membrana Celular/química , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Ratones , Ratones Mutantes , Datos de Secuencia Molecular , Mutación , Ácido Mirístico/metabolismo , Transducción de Señal , Receptor Toll-Like 4/análisis
8.
Microbes Infect ; 6(15): 1361-7, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15596121

RESUMEN

Bacterial lipopolysaccharides are recognized in mammals by a receptor complex composed of CD14, Toll-like receptor (TLR)-4 and MD-2. Transduction of signaling is achieved following the recruitment of a combination of four Toll-interleukin-1 resistance (TIR)-domain-containing adapter molecules, which provide a structural platform enabling the recruitment and activation of downstream effectors essential for pathway-specific transcription factor activation and inflammatory gene expression.


Asunto(s)
Antígenos de Superficie/metabolismo , Proteínas Portadoras/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , Animales , Antígenos de Superficie/fisiología , Proteínas Portadoras/fisiología , Endotoxinas/metabolismo , Lipopolisacáridos/farmacología , Antígeno 96 de los Linfocitos , Glicoproteínas de Membrana/fisiología , Receptores de Superficie Celular/fisiología , Receptor Toll-Like 4 , Receptores Toll-Like
9.
Proc Natl Acad Sci U S A ; 101(1): 233-8, 2004 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-14679297

RESUMEN

Virus infection, double-stranded RNA, and lipopolysaccharide each induce the expression of genes encoding IFN-alpha and -beta and chemokines, such as RANTES (regulated on activation, normal T cell expressed and secreted) and IP-10 (IFN-gamma inducible protein 10). This induction requires the coordinate activation of several transcription factors, including IFN-regulatory factor 3 (IRF3). The signaling pathways leading to IRF3 activation are triggered by the binding of pathogen-specific products to Toll-like receptors and culminate in the phosphorylation of specific serine residues in the C terminus of IRF3. Recent studies of human cell lines in culture have implicated two noncanonical IkappaB kinase (IKK)-related kinases, IKK-epsilon and Traf family member-associated NF-kappaB activator (TANK)-binding kinase 1 (TBK1), in the phosphorylation of IRF3. Here, we show that purified recombinant IKK-epsilon and TBK1 directly phosphorylate the critical serine residues in IRF3. We have also examined the expression of IRF3-dependent genes in mouse embryonic fibroblasts (MEFs) derived from Tbk1(-/-) mice, and we show that TBK1 is required for the activation and nuclear translocation of IRF3 in these cells. Moreover, Tbk1(-/-) MEFs show marked defects in IFN-alpha and -beta, IP-10, and RANTES gene expression after infection with either Sendai or Newcastle disease viruses or after engagement of the Toll-like receptors 3 and 4 by double-stranded RNA and lipopolysaccharide, respectively. Finally, TRIF (TIR domain-containing adapter-inducing IFN-beta), fails to activate IRF3-dependent genes in Tbk1(-/-) MEFs. We conclude that TBK1 is essential for IRF3-dependent antiviral gene expression.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas Serina-Treonina Quinasas/deficiencia , Factores de Transcripción/genética , Animales , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Fibroblastos/inmunología , Fibroblastos/metabolismo , Expresión Génica , Quinasa I-kappa B , Técnicas In Vitro , Factor 3 Regulador del Interferón , Interferón beta/genética , Ratones , Ratones Noqueados , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Virosis/genética , Virosis/inmunología , Virosis/metabolismo
10.
J Exp Med ; 198(7): 1043-55, 2003 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-14517278

RESUMEN

Toll-IL-1-resistance (TIR) domain-containing adaptor-inducing IFN-beta (TRIF)-related adaptor molecule (TRAM) is the fourth TIR domain-containing adaptor protein to be described that participates in Toll receptor signaling. Like TRIF, TRAM activates interferon regulatory factor (IRF)-3, IRF-7, and NF-kappaB-dependent signaling pathways. Toll-like receptor (TLR)3 and 4 activate these pathways to induce IFN-alpha/beta, regulated on activation, normal T cell expressed and secreted (RANTES), and gamma interferon-inducible protein 10 (IP-10) expression independently of the adaptor protein myeloid differentiation factor 88 (MyD88). Dominant negative and siRNA studies performed here demonstrate that TRIF functions downstream of both the TLR3 (dsRNA) and TLR4 (LPS) signaling pathways, whereas the function of TRAM is restricted to the TLR4 pathway. TRAM interacts with TRIF, MyD88 adaptor-like protein (Mal)/TIRAP, and TLR4 but not with TLR3. These studies suggest that TRIF and TRAM both function in LPS-TLR4 signaling to regulate the MyD88-independent pathway during the innate immune response to LPS.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/fisiología , Proteínas de Unión al ADN/fisiología , Lipopolisacáridos/farmacología , Glicoproteínas de Membrana/fisiología , FN-kappa B/fisiología , Receptores de Superficie Celular/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/fisiología , Secuencia de Aminoácidos , Animales , Línea Celular , Quimiocina CCL5/metabolismo , Humanos , Factor 3 Regulador del Interferón , Factor 7 Regulador del Interferón , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , ARN Bicatenario/farmacología , ARN Interferente Pequeño/fisiología , Receptor Toll-Like 3 , Receptor Toll-Like 4 , Receptores Toll-Like
11.
Nat Immunol ; 4(5): 491-6, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12692549

RESUMEN

The transcription factors interferon regulatory factor 3 (IRF3) and NF-kappaB are required for the expression of many genes involved in the innate immune response. Viral infection, or the binding of double-stranded RNA to Toll-like receptor 3, results in the coordinate activation of IRF3 and NF-kappaB. Activation of IRF3 requires signal-dependent phosphorylation, but little is known about the signaling pathway or kinases involved. Here we report that the noncanonical IkappaB kinase homologs, IkappaB kinase-epsilon (IKKepsilon) and TANK-binding kinase-1 (TBK1), which were previously implicated in NF-kappaB activation, are also essential components of the IRF3 signaling pathway. Thus, IKKepsilon and TBK1 have a pivotal role in coordinating the activation of IRF3 and NF-kappaB in the innate immune response.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Quimiocina CCL5/genética , Proteínas de Unión al ADN/inmunología , Regulación de la Expresión Génica , Humanos , Quinasa I-kappa B , Inmunidad Innata , Factor 3 Regulador del Interferón , Interferón beta/genética , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/metabolismo , FN-kappa B/inmunología , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Interferencia de ARN , Receptores de Superficie Celular/inmunología , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Receptor Toll-Like 3 , Receptores Toll-Like , Factores de Transcripción/inmunología , Virosis/genética , Virosis/inmunología , Virosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...