Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arthritis Rheumatol ; 69(2): 352-361, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27564840

RESUMEN

OBJECTIVE: Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that is elevated in the serum and synovial fluid of patients with osteoarthritis (OA). This study was undertaken to investigate the potential role of MIF in OA in human joint tissues and in vivo in mice with age-related and surgically induced OA. METHODS: MIF in conditioned media from human chondrocytes and meniscal cells and from cartilage explants was measured by enzyme-linked immunosorbent assay. The severity of OA was analyzed histologically in male wild-type and MIF-/- mice at 12 and 22 months of age and following destabilization of the medial meniscus (DMM) surgery in 12-week-old MIF-/- mice as well as in wild-type mice treated with a neutralizing MIF antibody. Synovial hyperplasia was graded in S100A8-immunostained histologic sections. Bone morphometric parameters were measured by micro-computed tomography. RESULTS: Human OA chondrocytes secreted 3-fold higher levels of MIF than normal chondrocytes, while normal and OA meniscal cells produced equivalent amounts. Compared to age- and strain-matched controls, the cartilage, bone, and synovium in older adult mice with MIF deletion were protected against changes of naturally occurring age-related OA. No protection against DMM-induced OA was seen in young adult MIF-/- mice or in wild-type mice treated with anti-MIF. Increased bone density in 8-week-old mice with MIF deletion was not maintained at 12 months. CONCLUSION: These results demonstrate a differential mechanism in the pathogenesis of naturally occurring age-related OA compared to injury-induced OA. The inhibition of MIF may represent a novel therapeutic target in the reduction of the severity of age-related OA.


Asunto(s)
Eliminación de Gen , Oxidorreductasas Intramoleculares/genética , Factores Inhibidores de la Migración de Macrófagos/genética , Osteoartritis/genética , Factores de Edad , Animales , Células Cultivadas , Humanos , Masculino , Ratones , Índice de Severidad de la Enfermedad
2.
J Biol Chem ; 291(13): 6641-54, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-26797130

RESUMEN

Oxidative stress-mediated post-translational modifications of redox-sensitive proteins are postulated as a key mechanism underlying age-related cellular dysfunction and disease progression. Peroxiredoxins (PRX) are critical intracellular antioxidants that also regulate redox signaling events. Age-related osteoarthritis is a common form of arthritis that has been associated with mitochondrial dysfunction and oxidative stress. The objective of this study was to determine the effect of aging and oxidative stress on chondrocyte intracellular signaling, with a specific focus on oxidation of cytosolic PRX2 and mitochondrial PRX3. Menadione was used as a model to induce cellular oxidative stress. Compared with chondrocytes isolated from young adult humans, chondrocytes from older adults exhibited higher levels of PRX1-3 hyperoxidation basally and under conditions of oxidative stress. Peroxiredoxin hyperoxidation was associated with inhibition of pro-survival Akt signaling and stimulation of pro-death p38 signaling. These changes were prevented in cultured human chondrocytes by adenoviral expression of catalase targeted to the mitochondria (MCAT) and in cartilage explants from MCAT transgenic mice. Peroxiredoxin hyperoxidation was observedin situin human cartilage sections from older adults and in osteoarthritic cartilage. MCAT transgenic mice exhibited less age-related osteoarthritis. These findings demonstrate that age-related oxidative stress can disrupt normal physiological signaling and contribute to osteoarthritis and suggest peroxiredoxin hyperoxidation as a potential mechanism.


Asunto(s)
Envejecimiento/metabolismo , Condrocitos/metabolismo , Proteínas de Homeodominio/metabolismo , Mitocondrias/metabolismo , Osteoartritis/metabolismo , Procesamiento Proteico-Postraduccional , Adulto , Envejecimiento/patología , Animales , Cartílago/metabolismo , Cartílago/patología , Catalasa/genética , Catalasa/metabolismo , Senescencia Celular/genética , Condrocitos/patología , Proteínas de Homeodominio/genética , Humanos , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Mitocondrias/patología , Osteoartritis/genética , Osteoartritis/patología , Estrés Oxidativo/efectos de los fármacos , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Técnicas de Cultivo de Tejidos , Transgenes , Vitamina K 3/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...