Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 25(2): 1228-1245, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38235663

RESUMEN

Immediate control of excessive bleeding and prevention of infections are of utmost importance in the management of wounds. Cryogels have emerged as promising materials for the rapid release of medication and achieving hemostasis. However, their quick release properties pose the challenge of exposing patients to high concentrations of drugs. In this study, hybrid nanocomposites were developed to address this issue by combining poly(vinyl alcohol) and κ-carrageenan with whitlockite nanoapatite (WNA) particles and ciprofloxacin, aiming to achieve rapid hemostasis and sustained antibacterial effects. A physically cross-linked cryogel was obtained by subjecting a blend of poly(vinyl alcohol) and κ-carrageenan to successive freezing-thawing cycles, followed by the addition of WNA. Furthermore, ciprofloxacin was introduced into the cryogel matrix for subsequent evaluation of its wound healing properties. The resulting gel system exhibited a 3D microporous structure and demonstrated excellent swelling, low cytotoxicity, and outstanding mechanical properties. These characteristics were evaluated through analytical and rheological experiments. The nanocomposite cryogel with 4% whitlockite showed extended drug release of 71.21 ± 3.5% over 21 days and antibacterial activity with a considerable growth inhibition zone (4.19 ± 3.55 cm). Experiments on a rat model demonstrated a rapid hemostasis property of cryogels within an average of 83 ± 4 s and accelerated the process of wound healing with 96.34% contraction compared to the standard, which exhibited only ∼78% after 14 days. The histopathological analysis revealed that the process of epidermal re-epithelialization took around 14 days following the skin incision. The cryogel loaded with WNAs and ciprofloxacin holds great potential for strategic utilization in wound management applications as an effective material for hemostasis and anti-infection purposes.


Asunto(s)
Fosfatos de Calcio , Criogeles , Alcohol Polivinílico , Humanos , Ratas , Animales , Criogeles/química , Alcohol Polivinílico/farmacología , Carragenina/química , Cicatrización de Heridas , Ciprofloxacina , Antibacterianos/farmacología , Antibacterianos/química , Hemostasis , Etanol
2.
Life Sci ; 298: 120518, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35367468

RESUMEN

BACKGROUND: Radiotherapy of thoracic neoplasms and accidental radiation exposure often results in pneumonitis and fibrosis of lungs. Here, we investigated the potential of amifostine analogs: DRDE-07, DRDE-30, and DRDE-35, in alleviating radiation-induced lung damage. METHODS: C57BL/6 mice were exposed to 13.5 Gy thoracic irradiation, 30 min after intraperitoneal administration of the analogs, and assessed for modulation of the pathological response at 12 and 24 weeks. KEY FINDINGS: DRDE-07, DRDE-30 and DRDE-35 increased the survival of irradiated mice from 20% to 30%, 80% and 70% respectively. Reduced parenchymal opacity (X-ray CT) in the lungs of DRDE-30 pre-treated mice corroborated well with the significant decrease in Ashcroft score (p < 0.01). Two-fold increase in SOD and catalase activities (p < 0.05), coupled with a 50% increase in GSH content and a 60% decrease in MDA content (p < 0.05) suggested restoration of the antioxidant defence system. A 20% to 40% decrease in radiation-induced apoptotic and mitotic death in the lung tissue (micronuclei: p < 0.01), resulted in attenuated lung and vascular permeability (FITC-Dextran leakage) by 50% (p < 0.01), and a commensurate reduction (~50%) in leukocyte infiltration in the injured tissue (p < 0.05). DRDE-30 abrogated the activation of pro-inflammatory NF-κB and p38/MAPK signaling cascades, suppressing the release of pro-inflammatory cytokines (IL-1ß: p < 0.05; TNF-α: p < 0.05; IL-6: p < 0.05) and up-regulation of CAMs on the endothelial cell surface. Reduction in hydroxyproline content (p < 0.01) and collagen suggested inhibition of lung fibrosis which was associated with attenuation of TGF-ß/Smad pathway-mediated-EMT. CONCLUSION: DRDE-30 could be a potential prophylactic agent against radiation-induced lung injury.


Asunto(s)
Amifostina , Fibrosis Pulmonar , Traumatismos por Radiación , Amifostina/farmacología , Amifostina/uso terapéutico , Animales , Inflamación/patología , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/prevención & control , Traumatismos por Radiación/metabolismo
3.
ACS Omega ; 7(15): 12509-12523, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35474820

RESUMEN

OBJECTIVE: The elevated choline transporters (ChT), choline kinase (ChK), choline uptake, and phosphorylation in certain tumor cells have influenced the development of radiolabeled choline derivatives as diagnostic probes for imaging cell membrane proliferation. We, therefore, aimed to develop a choline-based moiety for imaging choline kinase-overexpressed tumors by single-photon emission tomography (SPECT). A novel choline-based diagnostic probe was synthesized and evaluated preclinically in various ChT- and ChK-overexpressed tumor models for SPECT imaging applications. METHODS: The synthesis of diethylenetriaminepentaacetic acid-bis-choline ethylamine [DTPA-bis(ChoEA)] featured the conjugation of dimethylaminoethanol to a bifunctional chelator DTPA anhydride. [99mTc]Tc-DTPA-bis(ChoEA) was prepared, and its in vivo characteristics were evaluated in BALB/c mice and tumor-xenografted PC3, A549, and HCT116 athymic mouse models. The in vitro parameters, including cell binding and cytotoxicity, were assessed in PC3, A549, and HCT116 cell lines. To evaluate the specificity of the radioprobe, competitive binding studies were performed. Small-animal SPECT/CT diagnostic imaging was performed for in vivo evaluation. The mouse biodistribution data was further investigated to estimate the radiation dose in humans. RESULTS: In silico studies suggested high binding with enhanced specificity. A standard radiolabeling procedure using stannous chloride as a reducing agent showed a labeling yield of 99.5 ± 0.5%. The in silico studies suggested high binding with enhanced specificity. [99mTc]Tc-DTPA-bis(ChoEA) showed high in vitro stability and specificity. The pharmacokinetic studies of [99mTc]Tc-DTPA-bis(ChoEA) in mice showed an increased tumor-to-background ratio after few minutes of intravenous administration. The first-in-human trial was also conducted. The effective dose was estimated to be 0.00467 mSv/MBq (4.67 mSv/GBq), resulting in a radiation dose of up to 1.73 mSv for the 370 MBq injection of [99mTc]Tc-DTPA-bis(ChoEA). CONCLUSIONS: The synthesized radioprobe [99mTc]Tc-DTPA-bis(ChoEA) accumulates specifically in choline kinase-overexpressed tumors with a high signal-to-noise ratio. The preclinical and first-in-man data suggested that [99mTc]Tc-DTPA-bis(ChoEA) could potentially be used as a diagnostic SPECT tracer in the monitoring and staging of cancer.

4.
Chem Biol Interact ; 332: 109313, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33171137

RESUMEN

DNA is the store house of all necessary hereditary information for growth of cells and tissues. Physiological functionality of DNA depends on its 3D helical structure and any distortion in a structure may lead to mutation and genomic instability that may translate into disease like cancer. In order to prevent DNA damage, an exogenous compound is required that can either scavenge the excess free radicals or enhance the structural integrity of DNA through binding. In the present study, the binding mechanism of ethyl pyruvate (EP) with DNA models using different spectroscopic techniques was investigated for their structural integrity. Besides, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays were performed to determine the antioxidant scavenging of EP. Plasmid DNA relaxation assay was performed to assess the radioprotection efficacy of EP in the plasmid DNA. Circular dichroism (CD) and UV-Vis absorbance spectroscopic data confirmed the conformation change in ctDNA upon binding with EP. The molecular docking visualized that EP stacks between the DNA bases with a glide score of -2.117 kcalmol while EP binds in the minor groove region of DNA with the glide score of -1.414 kcalmol . DPPH and FRAP data confirmed that EP scavenges significantly radicals at higher concentrations. In vitro radioprotection study in plasmid DNA pBR322 showed that EP retained the supercoiled form of plasmid DNA at 50 Gy radiation dose.


Asunto(s)
ADN/metabolismo , Piruvatos/farmacología , Protectores contra Radiación/farmacología , Animales , Antioxidantes/metabolismo , Compuestos de Bifenilo/química , Bovinos , Dicroismo Circular , Recuperación de Fluorescencia tras Fotoblanqueo , Hierro/química , Simulación del Acoplamiento Molecular , Desnaturalización de Ácido Nucleico , Picratos/química , Plásmidos/metabolismo , Espectrofotometría Ultravioleta , Temperatura
5.
Front Pharmacol ; 9: 394, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29740320

RESUMEN

Bleomycin (BLM) is an effective curative option in the management of several malignancies including pleural effusions; but pulmonary toxicity, comprising of pneumonitis and fibrosis, poses challenge in its use as a front-line chemotherapeutic. Although Amifostine has been found to protect lungs from the toxic effects of radiation and BLM, its application is limited due to associated toxicity and unfavorable route of administration. Therefore, there is a need for selective, potent, and safe anti-fibrotic drugs. The current study was undertaken to assess the protective effects of DRDE-30, an analog of Amifostine, on BLM-induced lung injury in C57BL/6 mice. Whole body micro- computed tomography (CT) was used to non-invasively observe tissue damage, while broncheo-alveolar lavage fluid (BALF) and lung tissues were assessed for oxidative damage, inflammation and fibrosis. Changes in the lung density revealed by micro-CT suggested protection against BLM-induced lung injury by DRDE-30, which correlated well with changes in lung morphology and histopathology. DRDE-30 significantly blunted BLM-induced oxidative stress, inflammation and fibrosis in the lungs evidenced by reduced oxidative damage, endothelial barrier dysfunction, Myeloperoxidase (MPO) activity, pro-inflammatory cytokine release and protection of tissue architecture, that could be linked to enhanced anti-oxidant defense system and suppression of redox-sensitive pro-inflammatory signaling cascades. DRDE-30 decreased the BLM-induced augmentation in BALF TGF-ß and lung hydroxyproline levels, as well as reduced the expression of the mesenchymal marker α-smooth muscle actin (α-SMA), suggesting the suppression of epithelial to mesenchymal transition (EMT) as one of its anti-fibrotic effects. The results demonstrate that the Amifostine analog, DRDE-30, ameliorates the oxidative injury and lung fibrosis induced by BLM and strengthen its potential use as an adjuvant in alleviating the side effects of BLM.

6.
Steroids ; 78(11): 1071-86, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23891847

RESUMEN

In an endeavor to develop novel and improved selective estrogen receptor modulators as anti-breast cancer agents, the benzopyran compounds have been synthesized and identified which act as potent anti-estrogen at uterine level. The present study evaluates the anti-tumor activity of 2-[piperidinoethoxyphenyl]-3-phenyl-2H-benzo(b)pyran (CDRI-85/287) and explores the mechanism of action with a view to describe its potential to inhibit proliferation in ER-positive breast cancer cells MCF-7 and T47D. The compound decreased the expression of ERα while increased the expression of ERß thereby altering ERα/ERß ratio in both cell lines. Although the compound showed low binding affinity to ERs, it acted as ERα antagonist and ERß agonist in decreasing ERE- or AP-1-mediated transcriptional activation in these cells. Transactivation studies in ERα/ß-transfected MDA-MB231 cells suggested that at cyclin D1 promoter, compound antagonized the action of ERα-mediated E2 response while acted as estrogen agonist via ERß. Further, the compound led to decreased expression of ERα-dependent proliferation markers and ERß-dependent cell cycle progression markers. The expression of cell cycle inhibitory protein p21 was increased leading to G2/M phase arrest. In parallel, compound also interfered with EGFR activation, caused inhibition of PI-3-K/Akt pathway and subsequent induction of apoptosis via intrinsic pathway. A significant reduction in tumor mass and volume was observed in 85/287-treated mice bearing MCF-7 xenograft. We conclude that compound 85/287 exhibits significant anti-tumor activity via modulation of genomic as well as non-genomic mechanisms involved in cellular growth and arrested the cells in G2 phase in both MCF-7 and T47D breast cancer cells. Study suggests that CDRI-85/287 may have therapeutic potential in ER-positive breast cancer.


Asunto(s)
Benzopiranos/farmacología , Neoplasias de la Mama/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Piperidinas/farmacología , Receptores de Estrógenos/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Benzopiranos/metabolismo , Unión Competitiva , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proliferación Celular/efectos de los fármacos , Ciclina D1/genética , Factor de Crecimiento Epidérmico/farmacología , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Células MCF-7 , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Piperidinas/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción AP-1/metabolismo , Activación Transcripcional/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA