Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neuroendocrinol ; 28(1)2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26560973

RESUMEN

Hormone signalling during critical periods organises the adult circadian timekeeping system by altering adult hormone sensitivity and shaping fundamental properties of circadian rhythmicity. However, the timing of when developmental oestrogens modify the timekeeping system is poorly understood. To test the hypothesis that alterations in postnatal oestrogenic signalling organise adult daily activity rhythms, we utilised aromatase knockout mice (ArKO), which lack the enzyme required for oestradiol synthesis. ArKO and wild-type (WT) males and females were administered either oestradiol (E) or oil (OIL) daily for the first 5 postnatal days (p1-5E and p1-5OIL , respectively) because this time encompasses the emergence of clock gene rhythmicity and light responsiveness in the suprachiasmatic nucleus, a bilateral hypothalamic structure regarded as the 'master oscillator'. After sexual maturation, gonadectomy and exogenous oestradiol supplementation, locomotor parameters were assessed. We determined that altered oestrogenic signalling in early life exerts organisational control over the expression of daily and circadian activity rhythms in adult mice. Specifically, p1-5E reduced total wheel running activity in male and female ArKO and female WT mice but had no effect on WT male activity levels. In females, wheel running was consolidated by p1-5E to the early versus late evening, a phenomenon characteristic of male mice. The time of peak activity was advanced by p1-5E in WT and ArKO females but not males. P1-5E shortened the length of the active phase (alpha) in WT males but had no effect on ArKO males or females of either genotypes. Finally, p1-5E altered the magnitude of photic-induced shifts, suggesting that developmental oestrogenic signalling impacts adult circadian functions. In the present study, we further define both a critical period of development of the adult timekeeping system and the role that oestrogenic signalling plays in the expression of daily and circadian activity rhythms throughout life.


Asunto(s)
Conducta Animal/fisiología , Ritmo Circadiano/fisiología , Estradiol/metabolismo , Actividad Motora/fisiología , Animales , Aromatasa/genética , Aromatasa/metabolismo , Conducta Animal/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Estradiol/farmacología , Femenino , Masculino , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos
2.
Endocrinology ; 155(7): 2613-23, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24735329

RESUMEN

Estrogenic signaling shapes and modifies daily and circadian rhythms, the disruption of which has been implicated in psychiatric, neurologic, cardiovascular, and metabolic disease, among others. However, the activational mechanisms contributing to these effects remain poorly characterized. To determine the activational impact of estrogen on daily behavior patterns and differentiate between the contributions of the estrogen receptors ESR1 and ESR2, ovariectomized adult female mice were administered estradiol, the ESR1 agonist propylpyrazole triol, the ESR2 agonist diarylpropionitrile, or cholesterol (control). Animals were singly housed with running wheels in a 12-hour light, 12-hour dark cycle or total darkness. Estradiol increased total activity and amplitude, consolidated activity to the dark phase, delayed the time of peak activity (acrophase of wheel running), advanced the time of activity onset, and shortened the free running period (τ), but did not alter the duration of activity (α). Importantly, activation of ESR1 or ESR2 differentially impacted daily and circadian rhythms. ESR1 stimulation increased total wheel running and amplitude and reduced the proportion of activity in the light vs the dark. Conversely, ESR2 activation modified the distribution of activity across the day, delayed acrophase of wheel running, and advanced the time of activity onset. Interestingly, τ was shortened by estradiol or either estrogen receptor agonist. Finally, estradiol-treated animals administered a light pulse in the early subjective night, but no other time, had an attenuated response compared with controls. This decreased phase response was mirrored by animals treated with diarylpropionitrile, but not propylpyrazole triol. To conclude, estradiol has strong activational effects on the temporal patterning and expression of daily and circadian behavior, and these effects are due to distinct mechanisms elicited by ESR1 and ESR2 activation.


Asunto(s)
Ritmo Circadiano/fisiología , Receptor alfa de Estrógeno/fisiología , Receptor beta de Estrógeno/fisiología , Actividad Motora/fisiología , Análisis de Varianza , Animales , Estradiol/farmacología , Receptor alfa de Estrógeno/agonistas , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/agonistas , Estrógenos/farmacología , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Nitrilos/farmacología , Ovariectomía , Fenoles , Fotoperiodo , Propionatos/farmacología , Pirazoles/farmacología , Carrera/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...