Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Kidney Int Rep ; 9(5): 1473-1483, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38707804

RESUMEN

Introduction: Delayed graft function (DGF) is often defined as the need for dialysis treatment in the first week after a kidney transplantation. This definition, though readily applicable, is generic and unable to distinguish between "types" of DGF or time needed to recover function that may also significantly affect longer-term outcomes. We aimed to profile biological pathways in donation after circulatory death (DCD) kidney donors that correlate with DGF and different DGF durations. Methods: A total of N = 30 DCD kidney biopsies were selected from the UK Quality in Organ Donation (QUOD) biobank and stratified according to DGF duration (immediate function, IF n = 10; "short-DGF" (1-6 days), SDGF n = 10; "long-DGF" (7-22 days), LDGF n = 10). Samples were matched for donor and recipient demographics and analyzed by label-free quantitative (LFQ) proteomics, yielding identification of N = 3378 proteins. Results: Ingenuity pathway analysis (IPA) on differentially abundant proteins showed that SDGF kidneys presented upregulation of stress response pathways, whereas LDGF presented impaired response to stress, compared to IF. LDGF showed extensive metabolic deficits compared to IF and SDGF. Conclusion: DCD kidneys requiring dialysis only in the first week posttransplant present acute cellular injury at donation, alongside repair pathways upregulation. In contrast, DCD kidneys requiring prolonged dialysis beyond 7 days present minimal metabolic and antioxidant responses, suggesting that current DGF definitions might not be adequate in distinguishing different patterns of injury in donor kidneys contributing to DGF.

2.
Front Immunol ; 13: 850271, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720316

RESUMEN

Ischaemia-reperfusion injury (IRI) is an inevitable process in transplantation and results in inflammation and immune system activation. Alpha-1 antitrypsin (AAT) has anti-inflammatory properties. Normothermic machine perfusion (NMP) can be used to deliver therapies and may help in assessing the effects of IRI and immunity. This study investigated the effects of AAT on IRI and inflammation in pig kidneys when administered during preservation, followed by normothermic reperfusion (NR) with autologous whole blood, as a surrogate for transplant. Two different models were used to deliver AAT or placebo to paired slaughterhouse pig kidneys: Model 1: 7-h static cold storage (SCS) + 3-h NR (n = 5 pairs), where either AAT (10 mg/ml) or placebo was delivered in the flush following retrieval; Model 2: 4-h SCS + 3-h NMP + 3-h NR (n = 5 pairs), where either AAT or placebo was delivered during NMP. Injury markers and cytokines levels were analysed in the perfusate, and heat shock protein 70 KDa (HSP-70) was analysed in biopsies. AAT delivered to kidneys showed no adverse effects on perfusion parameters. HSP-70 fold changes were significantly lower in the AAT group during NMP (P < 0.01, paired t-test) but not during NR. Interleukin-1 receptor antagonist (IL-1ra) fold changes were significantly higher in the AAT group during NR model 1 (p < 0.05, two-way ANOVA). In contrast to the AAT group, significant upregulation of interleukin-1 beta (IL-1ß) and interleukin-6 (IL-6) between t = 90 min and t = 180 min and interleukin-8 (IL-8) between baseline and t = 90 min was observed in the control group in NR model 2 (p < 0.05, Tukey's multiple comparison test). However, overall inflammatory cytokines and injury markers showed similar levels between groups. Delivery of AAT to pig kidneys was safe without any detrimental effects. NMP and NR provided excellent methods for comparison of inflammation and immune activation in the delivery of a novel therapy.


Asunto(s)
Inflamación , Riñón , Animales , Citocinas/metabolismo , Inflamación/metabolismo , Riñón/patología , Perfusión/métodos , Reperfusión , Porcinos
3.
Transpl Int ; 35: 10420, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711321

RESUMEN

Donor kidney assessment may improve organ utilisation. Normothermic Machine Perfusion (NMP) has the potential to facilitate this advance. The mechanism of action is not yet determined and we aimed to assess mitochondrial function during NMP. Anaesthetised pigs (n = 6) had one kidney clamped for 60 min. The healthy contralateral kidney was removed and underwent NMP for 8 h (healthy control (HC), n = 6). Following 60 min warm ischaemia the injured kidney underwent HMP for 24 h, followed by NMP for 8 h (n = 6). Mitochondria were extracted from fresh tissue for analysis. Injured kidneys were analysed as two separate groups (IMa, n = 3 and IMb, n = 3). Renal resistance was higher (0.39ï, ± 0.29 vs. 1.65ï, ± 0.85; p = 0.01) and flow was lower (55ï, ± 28 vs. 7ï, ± 4; p = 0.03) during HMP in IMb than IMa. NMP blood flow was higher in IMa versus IMb (2-way ANOVA; p < 0.001) After 60 min NMP, O2 consumption was significantly lower in IMb versus IMa (p ≤ 0.002). State-3 respiration was significantly different between the groups (37ï, ± 19 vs. 24ï, ± 14 vs. 10ï, ± 8; nmolO2/min/mg; p = 0.049). Lactate levels were significantly lower in IMa versus IMb (p = 0.028). Mitochondrial respiration levels during NMP may be suggestive of kidney viability. Oxygen consumption, renal blood flow and lactate can differentiate severity of kidney injury during NMP.


Asunto(s)
Riñón , Preservación de Órganos , Animales , Humanos , Riñón/metabolismo , Lactatos/metabolismo , Mitocondrias , Consumo de Oxígeno , Perfusión , Porcinos , Supervivencia Tisular
4.
Ann Transl Med ; 10(1): 1, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35242846

RESUMEN

BACKGROUND: Advances in organ preservation, reconditioning and assessment have been driven by the increasing necessity to utilise organs from extended criteria donors, particularly donors after circulatory death. Research efforts in this area have aided translation of machine perfusion technology into clinical practice. Pigs are anatomically and physiologically similar to humans and are an excellent model. However, conducting large animal experimental research is challenging and typically limited by ethical and economic constraints. Here we describe a reproducible, cost-effective multi-organ abdominal procurement model of porcine organs from the slaughterhouse. METHODS: Domestic pigs are electrically stunned and exsanguinated following the standard abattoir process. Via a longitudinal midline incision, the thoracoabdominal viscera are removed en bloc by incising along the anterior vertebral plane. The abdominal organs are isolated, perfused and separated preserving their respective vasculature, allowing individual organ use for specific experiments. RESULTS: The warm ischaemic time is kept between 15-30 minutes. Using this highly protocolized procurement technique we have procured 12 livers, 162 kidneys and 12 pancreata for research, the majority of which have been utilized for ex situ perfusion experiments. CONCLUSIONS: We have described a reliable and reproducible procedure for abdominal multi-organ procurement from slaughterhouse pigs.

5.
Transpl Int ; 34(9): 1630-1642, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34448276

RESUMEN

Static cold storage (SCS) is the standard method for pancreas preservation prior to transplantation; however, it does not permit organ assessment. Normothermic reperfusion (NR) is utilized clinically for other organs to assess viability. Our aim was to develop NR using normothermic machine perfusion technique to simulate reperfusion at the time of transplantation, enabling evaluation of oxygenated hypothermic machine perfusion (HMPO2) as a newer strategy to optimize pancreas preservation. 13 porcine pancreases procured after circulatory death were divided into 3 groups: 4 pancreases preserved using SCS, and 2 groups preserved by HMPO2 (n = 4 and n = 5, differing by type of preservation solution). Duration of perfusion or cold storage was 6 hours before the 1-hour assessment using NR. Outcome measures were perfusion characteristics, biochemistry and change in tissue water mass as oedema assessment. During NR, the HMPO2 groups demonstrated better perfusion characteristics, normal macroscopic appearances, decreased water mass and one HMPO2 group demonstrated a response to glucose stimulation. Conversely, the SCS group showed an increased water mass and developed early macroscopic appearances of oedema, interstitial haemorrhage and minimal portal outflow. This study suggests that ex situ assessment of pancreases by NR is promising, and that HMPO2 may be better than SCS.


Asunto(s)
Preservación de Órganos , Pancrelipasa , Animales , Páncreas/cirugía , Perfusión , Reperfusión , Porcinos
6.
Transplant Direct ; 7(2): e653, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33490378

RESUMEN

BACKGROUND: In an era where global kidney shortage has pushed the field of transplantation towards using more marginal donors, modified kidney preservation techniques are currently being reviewed. Some techniques require further optimization before implementation in full scale transplantation studies. Using a porcine donation after circulatory death kidney model, we investigated whether initial kidney hemodynamics improved during normothermic machine perfusion if this was preceded by a short period of oxygenated hypothermic machine perfusion (oxHMP) rather than static cold storage (SCS). METHODS: Kidneys subjected to 75 minutes of warm ischemia were randomly assigned to either SCS (n = 4) or SCS + oxHMP (n = 4), with a total cold storage time of 240 minutes. Cold preservation was followed by 120 minutes of normothermic machine perfusion with continuous measurement of hemodynamic parameters and renal function. RESULTS: oxHMP preserved kidneys maintained significantly lower renal resistance throughout the normothermic machine perfusion period compared to SCS kidneys (P < 0.001), reaching lowest levels at 60 minutes with means of 0.71 ± 0.35 mm Hg/mL/min/100 g (SCS) and 0.45 ± 0.15 mm Hg/mL/min/100 g (oxHMP). Accordingly, the oxHMP group had a higher mean renal blood flow versus SCS kidneys (P < 0.001). oxHMP kidneys had higher oxygen consumption during normothermic machine perfusion compared to SCS preserved kidneys (P < 0.001). Creatinine clearance remained similar between groups (P = 0.665). CONCLUSIONS: Preceding oxHMP significantly improved initial normothermic machine perfusion hemodynamics and increased total oxygen consumption. With the long period of warm ischemia, immediate kidney function was not observed, reflected by the findings of low creatinine clearance in both groups.

7.
Am J Transplant ; 21(7): 2348-2359, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33382194

RESUMEN

Normothermic machine perfusion (NMP) of injured kidneys offers the opportunity for interventions to metabolically active organs prior to transplantation. Mesenchymal stromal cells (MSCs) can exert regenerative and anti-inflammatory effects in ischemia-reperfusion injury. The aims of this study were to evaluate the safety and feasibility of MSC treatment of kidneys during NMP using a porcine autotransplantation model, and examine potential MSC treatment-associated kidney improvements up to 14 days posttransplant. After 75 min of kidney warm ischemia, four experimental groups of n = 7 underwent 14 h of oxygenated hypothermic machine perfusion. In three groups this was followed by 240 min of NMP with infusion of vehicle, 10 million porcine, or 10 million human adipose-derived MSCs. All kidneys were autotransplanted after contralateral nephrectomy. MSC treatment did not affect perfusion hemodynamics during NMP or cause adverse effects at reperfusion, with 100% animal survival. MSCs did not affect plasma creatinine, glomerular filtration rate, neutrophil gelatinase-associated lipocalin concentrations or kidney damage assessed by histology during the 14 days, and MSCs retention was demonstrated in renal cortex. Infusing MSCs during ex vivo NMP of porcine kidneys was safe and feasible. Within the short posttransplant follow-up period, no beneficial effects of ex vivo MSC therapy could be demonstrated.


Asunto(s)
Células Madre Mesenquimatosas , Preservación de Órganos , Animales , Humanos , Riñón , Perfusión , Porcinos , Trasplante Autólogo
8.
Front Immunol ; 10: 765, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024574

RESUMEN

Ex-situ normothermic machine perfusion (NMP) of transplant kidneys allows assessment of kidney quality and targeted intervention to initiate repair processes prior to transplantation. Mesenchymal stromal cells (MSC) have been shown to possess the capacity to stimulate kidney repair. Therefore, the combination of NMP and MSC therapy offers potential to repair transplant kidneys. It is however unknown how NMP conditions affect MSC. In this study the effect of NMP perfusion fluid on survival, metabolism and function of thawed cryopreserved human (h)MSC and porcine (p)MSC in suspension conditions was studied. Suspension conditions reduced the viability of pMSC by 40% in both perfusion fluid and culture medium. Viability of hMSC was reduced by suspension conditions by 15% in perfusion fluid, whilst no differences were found in survival in culture medium. Under adherent conditions, survival of the cells was not affected by perfusion fluid. The perfusion fluid did not affect survival of fresh MSC in suspension compared to the control culture medium. The freeze-thawing process impaired the survival of hMSC; 95% survival of fresh hMSC compared to 70% survival of thawed hMSC. Moreover, thawed MSC showed increased levels of reactive oxygen species, which indicates elevated levels of oxidative stress, and reduced mitochondrial activity, which implies reduced metabolism. The adherence of pMSC and hMSC to endothelial cells was reduced after the thawing process, effect which was particularly profound in in the perfusion fluid. To summarize, we observed that conditions required for machine perfusion are influencing the behavior of MSC. The freeze-thawing process reduces survival and metabolism and increases oxidative stress, and diminishes their ability to adhere to endothelial cells. In addition, we found that hMSC and pMSC behaved differently, which has to be taken into consideration when translating results from animal experiments to clinical studies.


Asunto(s)
Criopreservación , Trasplante de Riñón/métodos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas , Perfusión , Animales , Supervivencia Celular , Humanos , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...