Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Bull (Beijing) ; 67(22): 2305-2315, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36546221

RESUMEN

Perovskite SrVO3 has been investigated as a promising lithium storage anode where the V cation plays the role of the redox center, combining excellent cycle stability and safe operating potential versus Li metal plating, with limited capacity. Here, we demonstrate the possibility to boost the lithium storage properties, by reducing the non-redox active Sr cation content and fine-tuning the O anion vacancies while maintaining a non-stoichiometric SrxVO3-δ perovskite structure. Theoretical investigations suggest that Sr vacancy can work as favorable Li+ storage sites and preferential transport channels for guest Li+ ions, contributing to the increased specific capacity and rate performance. In contrast, inducing O anion vacancy in SrxVO3-δ can improve rate performance while compromising the specific capacity. Our experimental results confirm the enhancement of specific capacities by fine adjusting the Sr and O vacancies, with a maximum capacity of 444 mAh g-1 achieved with Sr0.63VO3-δ, which is a 37% increase versus stoichiometric SrVO3. Although rich defects have been induced, SrxVO3-δ electrodes maintain a stable perovskite structure during cycling versus a LiFePO4 cathode, and the full-cell could achieve more than 6000 discharge/charge cycles with 80% capacity retention. This result highlights the possibility to use the cation defective-based engineering approach to design high-capacity perovskite oxide anode materials.

2.
RSC Adv ; 12(40): 26192-26200, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36275114

RESUMEN

Highly-dispersed 10 wt% FePO4 (FP)-coated LiCo0.90Ti0.05PO4 (LCTP) was successfully synthesized within a multiwalled carbon nanotube matrix via our original ultracentrifugation process. 10 wt% FP-coated LCTP sample showed a higher discharge capacity of 116 mA h g-1 together with stable cycle performance over 99% of capacity retention at the 100th cycle in high voltage. A combination of TEM, XRD, XPS, and XAFS analyses suggests that (i) Ti4+-substitution increases the utilization of Co redox (capacity increase) in LCP crystals by suppressing the Co3O4 formation and creating the vacancies in Co sites, and (ii) the FP-coating brought about the Fe enrichment of the surface of LCTP which prevents an irreversible crystal structure change and electrolyte decomposition during cycling, resulting in the stable cycle performance.

3.
Adv Mater ; 34(46): e2107262, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34677908

RESUMEN

Perovskite-type oxides, characterized by excellent multifunctional physical and chemical properties, are widely used in ferroelectric, piezoelectric, energy conversion, and storage applications. It is shown here that the perovskite-type SrVO3 can achieve excellent electrochemical performance as lithium-ion battery anodes thanks to its high electrically and ionically conductivity. Conducting additive-free SrVO3 electrodes can deliver a high specific capacity of 324 mAh g-1 at a safe and low average working potential of ≈0.9 V vs Li/Li+ together with excellent high-rate performance. A high areal capacity of ≈5.4 mAh cm-2 is obtained using an ultrathick (≈120 µm) electrode. Moreover, the fully lithiated SrVO3 electrode exhibits only 2.3% volume expansion that is explained by a simple solid-solution Li+ -storage mechanism, resulting in good cycling stability of the electrode. This study highlights the perovskite-type SrVO3 as a promising Li+ -storage anode and provides opportunities for exploring a variety of perovskite oxides as next-generation metal-ion battery anodes.

4.
ACS Nano ; 16(1): 111-118, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34787390

RESUMEN

MXenes are two-dimensional metal carbides or nitrides that are currently proposed in many applications thanks to their unique attributes including high conductivity and accessible surface. Recently, a synthetic route was proposed to prepare MXenes from the molten salt etching of precursors allowing for the preparation of MXene (denoted as MS-MXenes, for molten salt MXene) with tuned surface termination groups, resulting in improved electrochemical properties. However, further delamination of as-prepared multilayer MS-MXenes still remains a major challenge. Here, we report on the successful exfoliation of MS-Ti3C2Tx via the intercalation of the organic molecule TBAOH (tetrabutylammonium hydroxide), followed by sonication to separate the layers. The treatment time could be adapted to tune the wetting behavior of the MS-Ti3C2Tx. As a result, a self-supported Cl-terminated MXene film could be prepared by filtration. Finally, MS-Ti3C2Tx used as a Li-ion battery anode could achieve a high specific capacity of 225 mAh g-1 at a 1C rate together with an excellent rate capability of 95 mAh g-1 at 167C. These results also show that tuning of the surface chemistry of MXene is of key importance to this field with the likely result being increased electrochemical performance.

6.
Nat Mater ; 19(8): 894-899, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32284597

RESUMEN

Two-dimensional carbides and nitrides of transition metals, known as MXenes, are a fast-growing family of materials that have attracted attention as energy storage materials. MXenes are mainly prepared from Al-containing MAX phases (where A = Al) by Al dissolution in F-containing solution; most other MAX phases have not been explored. Here a redox-controlled A-site etching of MAX phases in Lewis acidic melts is proposed and validated by the synthesis of various MXenes from unconventional MAX-phase precursors with A elements Si, Zn and Ga. A negative electrode of Ti3C2 MXene material obtained through this molten salt synthesis method delivers a Li+ storage capacity of up to 738 C g-1 (205 mAh g-1) with high charge-discharge rate and a pseudocapacitive-like electrochemical signature in 1 M LiPF6 carbonate-based electrolyte. MXenes prepared via this molten salt synthesis route may prove suitable for use as high-rate negative-electrode materials for electrochemical energy storage applications.

7.
Nat Commun ; 11(1): 1348, 2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32165638

RESUMEN

Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we demonstrate a water-incorporation strategy to expand the interlayer gap of α-MoO3, in which water molecules take the place of lattice oxygen of α-MoO3. Accordingly, the modified α-MoO3 electrode exhibits theoretical-value-close specific capacity (963 C g-1 at 0.1 mV s-1), greatly improved rate capability (from 4.4% to 40.2% at 100 mV s-1) and boosted cycling stability (from 21 to 71% over 600 cycles). A fast-kinetics dual-ion-intercalation energy storage device is further assembled by combining the modified α-MoO3 anode with an anion-intercalation graphite cathode, operating well over a wide discharge rate range. Our study sheds light on a promising design strategy of layered materials for high-kinetics charge storage.

8.
Research (Wash D C) ; 2019: 6585686, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31912041

RESUMEN

Recently, multivalent aqueous calcium-ion batteries (CIBs) have attracted considerable attention as a possible alternative to Li-ion batteries. However, traditional Ca-ion storage materials show either limited rate capabilities and poor cycle life or insufficient specific capacity. Here, we tackle these limitations by exploring materials having a large interlayer distance to achieve decent specific capacities and one-dimensional architecture with adequate Ca-ion passages that enable rapid reversible (de)intercalation processes. In this work, we report the high-yield, rapid, and low-cost synthesis of 1D metal oxides MV3O8 (M = Li, K), CaV2O6, and CaV6O16·7H2O (CVO) via a molten salt method. Firstly, using 1D CVO as electrode materials, we show high capacity 205 mA h g-1, long cycle life (>97% capacity retention after 200 cycles at 3.0 C), and high-rate performance (117 mA h g-1 at 12 C) for Ca-ion (de)intercalation. This work represents a step forward for the development of the molten salt method to synthesize nanomaterials and to help pave the way for the future growth of Ca-ion batteries.

9.
Adv Mater ; : e1803594, 2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-30160318

RESUMEN

VO2 (B) features two lithiation/delithiation processes, one of which is kinetically facile and has been commonly observed at 2.5 V versus Li/Li+ in various VO2 (B) structures. In contrast, the other process, which occurs at 2.1 V versus Li/Li+ , has only been observed at elevated temperatures due to large interaction energy barrier and extremely sluggish kinetics. Here, it is demonstrated that a rational design of atomically thin, 2D nanostructures of VO2 (B) greatly lowers the interaction energy and Li+ -diffusion barrier. Consequently, the kinetically sluggish step is successfully enabled to proceed at room temperature for the first time ever. The atomically thin 2D VO2 (B) exhibits fast charge storage kinetics and enables fully reversible uptake and removal of Li ions from VO2 (B) lattice without a phase change, resulting in exceptionally high performance. This work presents an effective strategy to speed up intrinsically sluggish processes in non-van der Waals layered materials.

10.
Small ; 13(34)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28692755

RESUMEN

2D metal chalcogenide (MC) nanosheets (NS) have displayed high capacities as lithium-ion battery (LiB) anodes. Nevertheless, their complicated synthesis routes coupled with low electronic conductivity greatly limit them as promising LiB electrode material. Here, this work reports a facile single-walled carbon nanotube (SWCNT) percolating strategy for efficiently maximizing the electrochemical performances of gallium chalcogenide (GaX, X = S or Se). Multiscaled flexible GaX NS/SWCNT heterostructures with abundant voids for Li+ diffusion are fabricated by embedding the liquid-exfoliated GaX NS matrix within a SWCNT-percolated network; the latter improves the electron transport and ion diffusion kinetics as well as maintains the mechanical flexibility. Consequently, high capacities (i.e., 838 mAh g-1 per gallium (II) sulfide (GaS) NS/SWCNT mass and 1107 mAh g-1 per GaS mass; the latter is close to the theoretical value) and good rate capabilities are achieved, which can be majorly attributed to the alloying processes of disordered Ga formed after the first irreversible GaX conversion reaction, as monitored by in situ X-ray diffraction. The presented approach, colloidal solution processing of SWCNT and liquid-exfoliated MC NS to produce flexible paper-based electrode, could be generalized for wearable energy storage devices with promising performances.

11.
ACS Nano ; 10(5): 5398-404, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27158830

RESUMEN

Nanocrystalline Li3VO4 dispersed within multiwalled carbon nanotubes (MWCNTs) was prepared using an ultracentrifugation (uc) process and electrochemically characterized in Li-containing electrolyte. When charged and discharged down to 0.1 V vs Li, the material reached 330 mAh g(-1) (per composite) at an average voltage of about 1.0 V vs Li, with more than 50% capacity retention at a high current density of 20 A g(-1). This current corresponds to a nearly 500C rate (7.2 s) for a porous carbon electrode normally used in electric double-layer capacitor devices (1C = 40 mA g(-1) per activated carbon). The irreversible structure transformation during the first lithiation, assimilated as an activation process, was elucidated by careful investigation of in operando X-ray diffraction and X-ray absorption fine structure measurements. The activation process switches the reaction mechanism from a slow "two-phase" to a fast "solid-solution" in a limited voltage range (2.5-0.76 V vs Li), still keeping the capacity as high as 115 mAh g(-1) (per composite). The uc-Li3VO4 composite operated in this potential range after the activation process allows fast Li(+) intercalation/deintercalation with a small voltage hysteresis, leading to higher energy efficiency. It offers a promising alternative to replace high-rate Li4Ti5O12 electrodes in hybrid supercapacitor applications.

12.
Nat Commun ; 7: 10308, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26777573

RESUMEN

Sodium-ion batteries have been considered as potential candidates for stationary energy storage because of the low cost and wide availability of Na sources. However, their future commercialization depends critically on control over the solid electrolyte interface formation, as well as the degree of sodiation at the positive electrode. Here we report an easily scalable ball milling approach, which relies on the use of metallic sodium, to prepare a variety of sodium-based alloys, insertion layered oxides and polyanionic compounds having sodium in excess such as the Na4V2(PO4)2F3 phase. The practical benefits of preparing sodium-enriched positive electrodes as reservoirs to compensate for sodium loss during solid electrolyte interphase formation are demonstrated by assembling full C/P'2-Na1[Fe0.5Mn0.5]O2 and C/'Na3+xV2(PO4)2F3' sodium-ion cells that show substantial increases (>10%) in energy storage density. Our findings may offer electrode design principles for accelerating the development of the sodium-ion technology.

13.
Artículo en Inglés | MEDLINE | ID: mdl-27441165

RESUMEN

Understanding ion adsorption in nanoporous carbon electrodes is of great importance for designing the next-generation of high energy density electrical double-layer capacitors. In this work, X-ray scattering is used for investigating the impregnation of nanoporous carbons with electrolytes in the absence of applied potential. We are able to show that interactions between the carbon surface and electrolytes allow adsorption to take place in sub-nanopores, thus confirming experimentally for the first time the results predicted by molecular dynamic simulations.

14.
J Am Chem Soc ; 136(49): 17243-8, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25397400

RESUMEN

There is much interest in Na-ion batteries for grid storage because of the lower projected cost compared with Li-ion. Identifying Earth-abundant, low-cost, and safe materials that can function as intercalation cathodes in Na-ion batteries is an important challenge facing the field. Here we investigate such a material, ß-NaMnO2, with a different structure from that of NaMnO2 polymorphs and other compounds studied extensively in the past. It exhibits a high capacity (of ca. 190 mA h g(-1) at a rate of C/20), along with a good rate capability (142 mA h g(-1) at a rate of 2C) and a good capacity retention (100 mA h g(-1)after 100 Na extraction/insertion cycles at a rate of 2C). Powder XRD, HRTEM, and (23)Na NMR studies revealed that this compound exhibits a complex structure consisting of intergrown regions of α-NaMnO2 and ß-NaMnO2 domains. The collapse of the long-range structure at low Na content is expected to compromise the reversibility of the Na extraction and insertion processes occurring upon charge and discharge of the cathode material, respectively. Yet stable, reproducible, and reversible Na intercalation is observed.

15.
Science ; 341(6153): 1502-5, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-24072919

RESUMEN

The intercalation of ions into layered compounds has long been exploited in energy storage devices such as batteries and electrochemical capacitors. However, few host materials are known for ions much larger than lithium. We demonstrate the spontaneous intercalation of cations from aqueous salt solutions between two-dimensional (2D) Ti3C2 MXene layers. MXenes combine 2D conductive carbide layers with a hydrophilic, primarily hydroxyl-terminated surface. A variety of cations, including Na(+), K(+), NH4(+), Mg(2+), and Al(3+), can also be intercalated electrochemically, offering capacitance in excess of 300 farads per cubic centimeter (much higher than that of porous carbons). This study provides a basis for exploring a large family of 2D carbides and carbonitrides in electrochemical energy storage applications using single- and multivalent ions.

16.
Acta Crystallogr C ; 59(Pt 6): i50-2, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12794318

RESUMEN

Single crystals of the title compound have been prepared hydrothermally. Vanadate tetrahedra and distorted oxovanadium octahedra form layers, linked by two independent Cu atoms located on inversion centres. Each Cu atom is surrounded by six O atoms, forming an octahedron distorted by Jahn-Teller elongation. One of the two independent interlayer spaces bridged by the Cu atoms is significantly more compact than the other.

17.
Acta Crystallogr C ; 58(Pt 9): i111-3, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12205362

RESUMEN

A single crystal of KVTeO(5), potassium vanadium tellurite, has been grown. The present structure determination has been conducted together with the refinement of the NaVTeO(5) homologue, sodium vanadium tellurite, for the sake of precise comparison. The network consists of [VTeO(5)](n) ribbons built up by VO(4) tetrahedra linking centrosymmetric Te(2)O(6) groups and stacked along the [010] direction; the alkali cations are intercalated in between. The Te(IV) atom exhibits a typical one-sided coordination number (CN) of 4, completed by a lone pair, which forms a distorted triangular bipyramid with the four O atoms.

18.
Acta Crystallogr C ; 58(Pt 1): i6-8, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11781447

RESUMEN

A single crystal of MoVAlO7, vanadium aluminium molybdate, has been grown. The present structure determination is more precise than a previous powder-pattern investigation [Knorr, Jacubus, Dabrowska & Kurzawa (1998). Eur. J. Solid State Inorg. Chem. 35, 519-530]. A three-dimensional [MoAlO6](3n-)n network surrounds infinite strings of [VO]3+ groups [V-O = 1.586 (4) A] lying in the mirror planes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA