Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; 20(23): e2309318, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38174636

RESUMEN

Graphene, a promising material with excellent properties, suffers from a major limitation in electronics due to its zero bandgap. The gas molecules adsorption has proven to be an effective approach for band regulation, which usually requires a harsh environment. Here, O2 - ions produced with triboelectric plasma are used for in situ regulation of graphene, and the switching ratio can reach 1010. The O2 - ions physical adsorption will reduce the Fermi-level (EF) of graphene. As the EF of graphene is lower than the lowest unoccupied molecular orbital (LUMO) level of O2-, the adsorption of O2 - changes from uniform physical adsorption to local chemical adsorption, thereby realizing the semiconductor properties of graphene. The local graphene bandgap is calculated to be 83.4 meV by the variable-temperature experiment. Furthermore, annealing treatment can restore to 1/10 of the initial conductance. The C─O bond formed by O2 - adsorption has low bond energy and is easy to desorb, while the C═O bond formed by adsorption on defects and edges has higher bond energy and is difficult to desorb. The study proposes a simple in situ method to investigate the microscopic process of O2 - adsorption on the graphene surface, demonstrating a new perspective for local energy band engineering of graphene.

2.
Nanotechnology ; 35(13)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37802048

RESUMEN

Sliding grating-structured triboelectric nanogenerators (SG-TENGs) can multiply transferred charge, reduce open-circuit voltage, and increase short-circuit current, which have wide application prospects in self-powered systems. However, conventional SG-TENGs have an ultrahigh internal equivalent impedance, which reduces the output voltage and energy under low load resistances (<10 MΩ). The Pulsed SG-TENGs can reduce the equivalent impedance to near zero by introducing a synchronously triggered mechanical switch (STMS), but its limited output time causes the incomplete charge transfer under high load resistances (>1 GΩ). In this paper, a conventional and pulsed hybrid SG-TENG (CPH-SG-TENG) is developed through rational designing STMS with tunable width and output time. The matching relationship among grid electrode width, contactor width of STMS, sliding speed, and load resistance has been studied, which provides a feasible solution for simultaneous realization of high output energy under small load resistances and high output voltage under high load resistances. The impedance matching range is extended from zero to at least 10 GΩ. The output performance of CPH-SG-TENG under low and high load resistances are demonstrated by passive power management circuit and arc discharge, respectively. The general strategy using tunable STMS combines the advantages of conventional and pulsed TENGs, which has broad application prospects in the fields of TENGs and self-powered systems.

3.
Exploration (Beijing) ; 2(6): 20220065, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37324798

RESUMEN

Reducing the high operation temperature of gas sensor to room temperature (RT) have attracted intense interests for its distinct preponderances, including energy-saving and super stability, which presents great prospects in commercial application. The exciting strategies for RT gas sensing, such as unique materials with activated surface or light activation, do not directly modulate the active ions for gas sensing, limiting the RT gas sensing performances. Here, an active-ion-gated strategy has been proposed for RT gas sensing with high performance and low power consumption, in which gas ions in triboelectric plasma are introduced into metal oxide semiconductor (MOS) film to act as both floating gate and active sensing ions. The active-ion-gated ZnO nanowires (NWs) array shows a sensitivity of 38.3% to 10 ppm acetone gas at RT, and the maximum power consumption is only 4.5 mW. At the same time, the gas sensor exhibits excellent selectivity to acetone. More importantly, the response (recovery) time of this sensor is as low as 11 s (25 s). It is found that OH-(H2O)4 ions in plasma are the key for realizing RT gas sensing ability, and an accompanied resistive switch is also observed. It is considered that the electron transfer between OH-(H2O)4 and ZnO NWs will forms a hydroxyl-like intermediate state (OH*) on the top of Zn2+, leading to the band bending of ZnO and activating the reactive O2 - ions on the oxygen vacancies. The active-ion-gated strategy proposed here present a novel exploration to achieving RT gas sensing performance of MOS by activating sensing properties at the scale of ions or atoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...