Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Bot ; 105(8): 1345-1368, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30074620

RESUMEN

PREMISE OF THE STUDY: The fossil record of Agathis historically has been restricted to Australasia. Recently described fossils from the Eocene of Patagonian Argentina showed a broader distribution than found previously, which is reinforced here with a new early Paleocene Agathis species from Patagonia. No previous phylogenetic analyses have included fossil Agathis species. METHODS: We describe macrofossils from Patagonia of Agathis vegetative and reproductive organs from the early Danian, as well as leaves with Agathis affinities from the latest Maastrichtian. A total evidence phylogenetic analysis is performed, including the new Danian species together with other fossil species having agathioid affinities. KEY RESULTS: Early Danian Agathis immortalis sp. nov. is the oldest definite occurrence of Agathis and one of the most complete Agathis species in the fossil record. Leafy twigs, leaves, pollen cones, pollen, ovuliferous complexes, and seeds show features that are extremely similar to the living genus. Dilwynites pollen grains, associated today with both Wollemia and Agathis and known since the Turonian, were found in situ within the pollen cones. CONCLUSIONS: Agathis was present in Patagonia ca. 2 million years after the K-Pg boundary, and the putative latest Cretaceous fossils suggest that the genus survived the K-Pg extinction. Agathis immortalis sp nov. is recovered in a stem position for the genus, while A. zamunerae (Eocene, Patagonia) is recovered as part of the crown. A Mesozoic divergence for the Araucariaceae crown group, previously challenged by molecular divergence estimates, is supported by the combined phylogenetic analyses including the fossil taxa.


Asunto(s)
Evolución Biológica , Fósiles/ultraestructura , Tracheophyta/genética , Argentina , Tracheophyta/ultraestructura
2.
Am J Bot ; 105(8): 1286-1303, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30025163

RESUMEN

PREMISE OF THE STUDY: Equisetum is the sole living representative of Sphenopsida, a clade with impressive species richness, a long fossil history dating back to the Devonian, and obscure relationships with other living pteridophytes. Based on molecular data, the crown group age of Equisetum is mid-Paleogene, although fossils with possible crown synapomorphies appear in the Triassic. The most widely circulated hypothesis states that the lineage of Equisetum derives from calamitaceans, but no comprehensive phylogenetic studies support the claim. Using a combined approach, we provide a comprehensive phylogenetic analysis of Equisetales, with special emphasis on the origin of genus Equisetum. METHODS: We performed parsimony phylogenetic analyses to address relationships of 43 equisetalean species (15 extant, 28 extinct) using a combination of morphological and molecular characters. KEY RESULTS: We recovered Equisetaceae + Neocalamites as sister to Calamitaceae + a clade of Angaran and Gondwanan horsetails, with the four groups forming a clade that is sister to Archaeocalamitaceae. The estimated age for the Equisetum crown group is mid-Mesozoic. CONCLUSIONS: Modern horsetails are not nested within calamitaceans; instead, both groups have explored independent evolutionary trajectories since the Carboniferous. Diverse fossil taxon sampling helps to shed light on the position and relationships of equisetalean lineages, of which only a tiny remnant is present within the extant flora. Understanding these relationships and early character configurations of ancient plant clades as Equisetales provide useful tests of hypotheses about overall phylogenetic relationships of euphyllophytes and foundations for future tests of molecular dates with paleontological data.


Asunto(s)
Equisetum/genética , Fósiles , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...