Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Epigenetics ; 16(1): 114, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169387

RESUMEN

BACKGROUND: The effect of vaccination on the epigenome remains poorly characterized. In previous research, we identified an association between seroprotection against influenza and DNA methylation at sites associated with the RIG-1 signaling pathway, which recognizes viral double-stranded RNA and leads to a type I interferon response. However, these studies did not fully account for confounding factors including age, gender, and BMI, along with changes in cell-type composition. RESULTS: Here, we studied the influenza vaccine response in a longitudinal cohort vaccinated over two consecutive years (2019-2020 and 2020-2021), using peripheral blood mononuclear cells and a targeted DNA methylation approach. To address the effects of multiple factors on the epigenome, we designed a multivariate multiple regression model that included seroprotection levels as quantified by the hemagglutination-inhibition (HAI) assay test. CONCLUSIONS: Our findings indicate that 179 methylation sites can be combined as potential signatures to predict seroprotection. These sites were not only enriched for genes involved in the regulation of the RIG-I signaling pathway, as found previously, but also enriched for other genes associated with innate immunity to viruses and the transcription factor binding sites of BRD4, which is known to impact T cell memory. We propose a model to suggest that the RIG-I pathway and BRD4 could potentially be modulated to improve immunization strategies.


Asunto(s)
Metilación de ADN , Inmunidad Innata , Vacunas contra la Influenza , Gripe Humana , Humanos , Metilación de ADN/genética , Metilación de ADN/efectos de los fármacos , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Inmunidad Innata/genética , Femenino , Masculino , Gripe Humana/prevención & control , Gripe Humana/inmunología , Gripe Humana/genética , Persona de Mediana Edad , Adulto , Transducción de Señal , Linfocitos T/inmunología , Estudios Longitudinales , Epigénesis Genética , Vacunación , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/inmunología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo
2.
Front Microbiol ; 15: 1426691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081893

RESUMEN

Introduction: Canine oral disease has been associated with significant changes in the oral microbiome rather than the presence or absence of individual species. In addition, most studies focus on a single age group of canines and as of yet, the relationship between canine microbiomes and age is poorly understood. Methods: This study used a shotgun whole gene sequencing approach in tandem with the Aladdin Bioinformatics platform to profile the microbiomes of 96 companion dogs, with the sourmash-zymo reference database being used to perform taxonomic profiling. Results: Findings showed significant age correlations among 19 species, including positive correlations among several Porphyromonas species and a negative correlation with C. steedae. Although a significant correlation was found between predicted and actual ages, ElasticNet Regression was unable to successfully predict the ages of younger canines based on their microbiome composition. Both microbiome samples and microbial species were successfully clustered by age group or age correlation, showing that the age-microbiome relationship survives dimensionality reduction. Three distinct clusters of microbial species were found, which were characterized by Porphyromonas, Conchiformibius, and Prevotella genera, respectively. Discussion: Findings showed that the microbiomes of older dogs resembled those that previous literature attributed to dogs with periodontal disease. This suggests that the process of aging may introduce greater risks for canine oral disease.

3.
Res Sq ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38826189

RESUMEN

Background: The effect of vaccination on the epigenome remains poorly characterized. In previous research, we identified an association between seroprotection against influenza and DNA methylation at sites associated with the RIG-1 signaling pathway, which recognizes viral double-stranded RNA and leads to a type I interferon response. However, these studies did not fully account for confounding factors including age, gender, and BMI, along with changes in cell type composition. Results: Here, we studied the influenza vaccine response in a longitudinal cohort vaccinated over two consecutive years (2019-2020 and 2020-2021), using peripheral blood mononuclear cells and a targeted DNA methylation approach. To address the effects of multiple factors on the epigenome, we designed a multivariate multiple regression model that included seroprotection levels as quantified by the hemagglutination-inhibition (HAI) assay test. Conclusions: Our findings indicate that 179 methylation sites can be combined as potential signatures to predict seroprotection. These sites were not only enriched for genes involved in the regulation of the RIG-I signaling pathway, as found previously, but also enriched for other genes associated with innate immunity to viruses and the transcription factor binding sites of BRD4, which is known to impact T cell memory. We propose a model to suggest that the RIG-I pathway and BRD4 could potentially be modulated to improve immunization strategies.

4.
Front Bioinform ; 4: 1329144, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638123

RESUMEN

Introduction: DNA methylation, specifically the formation of 5-methylcytosine at the C5 position of cytosine, undergoes reproducible changes as organisms age, establishing it as a significant biomarker in aging studies. Epigenetic clocks, which integrate methylation patterns to predict age, often employ linear models based on penalized regression, yet they encounter challenges in handling missing data, count-based bisulfite sequence data, and interpretation. Methods: To address these limitations, we introduce BayesAge, an extension of the scAge methodology originally designed for single-cell DNA methylation analysis. BayesAge employs maximum likelihood estimation (MLE) for age inference, models count data using binomial distributions, and incorporates LOWESS smoothing to capture non-linear methylation-age dynamics. This approach is tailored for bulk bisulfite sequencing datasets. Results: BayesAge demonstrates superior performance compared to scAge. Notably, its age residuals exhibit no age association, offering a less biased representation of epigenetic age variation across populations. Furthermore, BayesAge facilitates the estimation of error bounds on age inference. When applied to down-sampled data, BayesAge achieves a higher coefficient of determination between predicted and actual ages compared to both scAge and penalized regression. Discussion: BayesAge presents a promising advancement in epigenetic age prediction, addressing key challenges encountered by existing models. By integrating robust statistical techniques and tailored methodologies for count-based data, BayesAge offers improved accuracy and interpretability in predicting age from bulk bisulfite sequencing datasets. Its ability to estimate error bounds enhances the reliability of age inference, thereby contributing to a more comprehensive understanding of epigenetic aging processes.

5.
Sci Rep ; 14(1): 1455, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38228690

RESUMEN

Influenza virus infection alters the promoter DNA methylation of key immune response-related genes, including type-1 interferons and proinflammatory cytokines. However, less is known about the effect of the influenza vaccine on the epigenome. We utilized a targeted DNA methylation approach to study the longitudinal effects (day 0 pre-vaccination and day 28 post-vaccination) on influenza vaccination responses in peripheral blood mononuclear cells. We found that baseline, pre-vaccination methylation profiles are associated with pre-existing, protective serological immunity. Additionally, we identified 481 sites that were differentially methylated between baseline and day 28 post-vaccination. These were enriched for genes involved in the regulation of the RIG-I signaling pathway, an important regulator of viral responses. Our results suggest that DNA methylation changes to components of the RIG-I pathway are associated with vaccine effectiveness. Therefore, immunization strategies that target this pathway may improve serological responses to influenza vaccination.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Metilación de ADN , Gripe Humana/prevención & control , Leucocitos Mononucleares , Vacunación/métodos , Proteína 58 DEAD Box/genética , Transducción de Señal , Anticuerpos Antivirales
6.
Physiol Genomics ; 55(12): 618-633, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37781740

RESUMEN

Epigenetic modifications, particularly DNA methylation, have emerged as regulators of gene expression and are implicated in various biological processes and disease states. Understanding the factors influencing the epigenome is essential for unraveling its complexity. In this study, we aimed to identify how the methylome of buccal epithelial cells, a noninvasive and easily accessible tissue, is associated with demographic and health-related variables commonly used in clinical settings, such as age, sex, blood immune composition, hemoglobin levels, and others. We developed a model to assess the association of multiple factors with the human methylome and identify the genomic loci significantly impacted by each trait. We demonstrated that DNA methylation variation is accurately modeled by several factors. We confirmed the well-known impact of age and sex and unveiled novel clinical factors associated with DNA methylation, such as blood neutrophils, hemoglobin, red blood cell distribution width, high-density lipoprotein cholesterol, and urea. Genomic regions significantly associated with these traits were enriched in relevant transcription factors, drugs, and diseases. Among our findings, we showed that neutrophil-impacted loci were involved in neutrophil functionality and maturation. Similarly, hemoglobin-influenced sites were associated with several diseases, including aplastic anemia, and the genomic loci affected by urea were related to congenital anomalies of the kidney and urinary tract. Our findings contribute to a better understanding of the human methylome plasticity and provide insights into novel factors shaping DNA methylation patterns, highlighting their potential clinical implications as biomarkers and the importance of considering these physiological traits in future medical epigenomic investigations.NEW & NOTEWORTHY We have developed a quantitative model to assess how the human methylome is associated with several factors and to identify the genomic loci significantly impacted by each trait. We reported novel health-related factors driving DNA methylation patterns and new site-specific regulations that further elucidate methylome dynamics. Our study contributes to a better understanding of the plasticity of the human methylome and unveils novel physiological traits with a potential role in future medical epigenomic investigations.


Asunto(s)
Epigénesis Genética , Epigenoma , Humanos , Metilación de ADN/genética , Células Epiteliales , Hemoglobinas , Urea
7.
Epigenetics ; 18(1): 2240188, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37533239

RESUMEN

DNA methylation has proven to be the most promising age-predictive biomarker in mammals resulting in the emergence of 'epigenetic clocks' that describe the relationship between methylation levels and age. Using Targeted bisulfite Sequencing, we evaluated blood DNA-methylation data from 96 domesticated cows (Bos Taurus) of which 88 were adults and 8 were calves. This allowed us to measure DNA methylation across three thousand regions in the genome that were conserved across mammals. The significant association of age with the changes in DNA methylation enabled us to construct an epigenetic clock that predicts the age of cows to within nine months. We also investigated whether factors exist that moderate the association between epigenetic age and actual age and found that milk production levels significantly increase the rate of epigenetic ageing, suggesting that the stress of excessive milk production might be accelerating epigenetic ageing in cows.


Asunto(s)
Metilación de ADN , Leche , Femenino , Bovinos/genética , Animales , Envejecimiento/genética , Epigénesis Genética , Mamíferos
8.
Epigenetics ; 17(11): 1497-1512, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35502722

RESUMEN

Unlike genomes, which are static throughout the lifespan of an organism, DNA methylomes are dynamic. To study these dynamics, we developed quantitative models that measure the effect of multiple factors on DNA methylomes including, age, sex, weight, and genetics. We conducted our study in canids, which prove to be an ideal species to assess epigenetic moderators due to their extreme variability in size and well-characterized genetic structure. We collected buccal swabs from 217 canids (207 domestic dogs and 10 grey wolves) and used targeted bisulphite sequencing to measure methylomes. We also measured genotypes at over one thousand single nucleotide polymorphisms (SNPs). As expected, we found that DNA methylomes are strongly associated with age, enabling the construction of epigenetic clocks. However, we also identify novel associations between methylomes and sex, weight, and sterilization status, leading to accurate models that predict these factors. Methylomes are also affected by genetics, and we observe multiple associations between SNP loci and methylated CpGs. Finally, we show that several factors moderate the relationship between epigenetic ages and real ages, such as body weight, which increases epigenetic ageing. In conclusion, we demonstrate that the plasticity of DNA methylomes is impacted by myriad genetics and physiological factors, and that DNA methylation biomarkers are accurate predictors of age, sex and sterilization status.


Asunto(s)
Metilación de ADN , Epigenoma , Animales , Perros , Epigenómica , Longevidad , Genotipo , Epigénesis Genética
9.
Nat Commun ; 13(1): 783, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145108

RESUMEN

Infinium methylation arrays are not available for the vast majority of non-human mammals. Moreover, even if species-specific arrays were available, probe differences between them would confound cross-species comparisons. To address these challenges, we developed the mammalian methylation array, a single custom array that measures up to 36k CpGs per species that are well conserved across many mammalian species. We designed a set of probes that can tolerate specific cross-species mutations. We annotate the array in over 200 species and report CpG island status and chromatin states in select species. Calibration experiments demonstrate the high fidelity in humans, rats, and mice. The mammalian methylation array has several strengths: it applies to all mammalian species even those that have not yet been sequenced, it provides deep coverage of conserved cytosines facilitating the development of epigenetic biomarkers, and it increases the probability that biological insights gained in one species will translate to others.


Asunto(s)
Secuencia Conservada , Metilación de ADN , Mamíferos/genética , Mamíferos/metabolismo , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , Animales , Biomarcadores , Islas de CpG , Epigénesis Genética , Humanos , Ratones , Mutación , Ratas , Transcriptoma
10.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649198

RESUMEN

Persistent methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is life threatening and occurs in up to 30% of MRSA bacteremia cases despite appropriate antimicrobial therapy. Isolates of MRSA that cause antibiotic-persistent methicillin-resistant S. aureus bacteremia (APMB) typically have in vitro antibiotic susceptibilities equivalent to those causing antibiotic-resolving methicillin-resistant S. aureus bacteremia (ARMB). Thus, persistence reflects host-pathogen interactions occurring uniquely in context of antibiotic therapy in vivo. However, host factors and mechanisms involved in APMB remain unclear. We compared DNA methylomes in circulating immune cells from patients experiencing APMB vs. ARMB. Overall, methylation signatures diverged in the distinct patient cohorts. Differentially methylated sites intensified proximate to transcription factor binding sites, primarily in enhancer regions. In APMB patients, significant hypomethylation was observed in binding sites for CCAAT enhancer binding protein-ß (C/EBPß) and signal transducer/activator of transcription 1 (STAT1). In contrast, hypomethylation in ARMB patients localized to glucocorticoid receptor and histone acetyltransferase p300 binding sites. These distinct methylation signatures were enriched in neutrophils and achieved a mean area under the curve of 0.85 when used to predict APMB using a classification model. These findings validated by targeted bisulfite sequencing (TBS-seq) differentiate epigenotypes in patients experiencing APMB vs. ARMB and suggest a risk stratification strategy for antibiotic persistence in patients treated for MRSA bacteremia.


Asunto(s)
Bacteriemia/metabolismo , Metilación de ADN , Staphylococcus aureus Resistente a Meticilina/metabolismo , Elementos de Respuesta , Infecciones Estafilocócicas/metabolismo , Antibacterianos/administración & dosificación , Bacteriemia/tratamiento farmacológico , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factor de Transcripción STAT1/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Factores de Transcripción p300-CBP/metabolismo
11.
Methods ; 187: 13-27, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32755621

RESUMEN

Cytosine methylation is one of the best studied epigenetic modifications. In mammals, DNA methylation patterns vary among cells and is mainly found in the CpG context. DNA methylation is involved in important processes during development and differentiation and its dysregulation can lead to or is associated with diseases, such as cancer, loss-of-imprinting syndromes and neurological disorders. It has been also shown that DNA methylation at the cellular, tissue and organism level varies with age. To overcome the costs of Whole-Genome Bisulfite Sequencing, the gold standard method to detect 5-methylcytosines at a single base resolution, DNA methylation arrays have been developed and extensively used. This method allows one to assess the status of a fraction of the CpG sites present in the genome of an organism. In order to combine the relatively low cost of Methylation Arrays and digital signals of bisulfite sequencing, we developed a Targeted Bisulfite Sequencing method that can be applied to biomarker discovery for virtually any phenotype. Here we describe a comprehensive step-by-step protocol to build a DNA methylation-based epigenetic clock.


Asunto(s)
Metilación de ADN , Epigenómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , 5-Metilcitosina/análisis , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , Factores de Edad , Envejecimiento/genética , Biomarcadores/análisis , Epigénesis Genética , Humanos , Modelos Genéticos , Sulfitos/química
12.
Cancer Discov ; 10(11): 1645-1653, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32699033

RESUMEN

Transgenic T-cell receptor (TCR) adoptive cell therapies recognizing tumor antigens are associated with robust initial response rates, but frequent disease relapse. This usually occurs in the setting of poor long-term persistence of cells expressing the transgenic TCR, generated using murine stem cell virus (MSCV) γ-retroviral vectors. Analysis of clinical transgenic adoptive cell therapy products in vivo revealed that despite strong persistence of the transgenic TCR DNA sequence over time, its expression was profoundly decreased over time at the RNA and protein levels. Patients with the greatest degrees of expression suppression displayed significant increases in DNA methylation over time within the MSCV promoter region, as well as progressive increases in DNA methylation within the entire MSCV vector over time. These increases in vector methylation occurred independently of its integration site within the host genomes. These results have significant implications for the design of future viral vector gene-engineered adoptive cell transfer therapies. SIGNIFICANCE: Cellular immunotherapies' reliance on retroviral vectors encoding foreign genetic material can be vulnerable to progressive acquisition of DNA methylation and subsequent epigenetic suppression of the transgenic product in TCR adoptive cell therapy. This must be considered in the design of future generations of cellular immunotherapies for cancer.This article is highlighted in the In This Issue feature, p. 1611.


Asunto(s)
Epigénesis Genética/genética , Vectores Genéticos/genética , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción Genética/métodos , Humanos
13.
PLoS One ; 14(4): e0214368, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30946758

RESUMEN

Whole-genome bisulfite sequencing (WGBS) and reduced representation bisulfite sequencing (RRBS) are widely used for measuring DNA methylation levels on a genome-wide scale. Both methods have limitations: WGBS is expensive and prohibitive for most large-scale projects; RRBS only interrogates 6-12% of the CpGs in the human genome. Here, we introduce methylation-sensitive restriction enzyme bisulfite sequencing (MREBS) which has the reduced sequencing requirements of RRBS, but significantly expands the coverage of CpG sites in the genome. We built a multiple regression model that combines the two features of MREBS: the bisulfite conversion ratios of single cytosines (as in WGBS and RRBS) as well as the number of reads that cover each locus (as in MRE-seq). This combined approach allowed us to estimate differential methylation across 60% of the genome using read count data alone, and where counts were sufficiently high in both samples (about 1.5% of the genome), our estimates were significantly improved by the single CpG conversion information. We show that differential DNA methylation values based on MREBS data correlate well with those based on WGBS and RRBS. This newly developed technique combines the sequencing cost of RRBS and DNA methylation estimates on a portion of the genome similar to WGBS, making it ideal for large-scale projects of mammalian genomes.


Asunto(s)
Metilación de ADN/genética , Enzimas de Restricción del ADN/metabolismo , Análisis de Secuencia de ADN/métodos , Sulfitos/química , Animales , Línea Celular , Reprogramación Celular , Cromatina/metabolismo , Islas de CpG/genética , Genoma , Ratones
14.
Aging (Albany NY) ; 10(10): 2832-2854, 2018 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-30348905

RESUMEN

Human DNA-methylation data have been used to develop highly accurate biomarkers of aging ("epigenetic clocks"). Recent studies demonstrate that similar epigenetic clocks for mice (Mus Musculus) can be slowed by gold standard anti-aging interventions such as calorie restriction and growth hormone receptor knock-outs. Using DNA methylation data from previous publications with data collected in house for a total 1189 samples spanning 193,651 CpG sites, we developed 4 novel epigenetic clocks by choosing different regression models (elastic net- versus ridge regression) and by considering different sets of CpGs (all CpGs vs highly conserved CpGs). We demonstrate that accurate age estimators can be built on the basis of highly conserved CpGs. However, the most accurate clock results from applying elastic net regression to all CpGs. While the anti-aging effect of calorie restriction could be detected with all types of epigenetic clocks, only ridge regression based clocks replicated the finding of slow epigenetic aging effects in dwarf mice. Overall, this study demonstrates that there are trade-offs when it comes to epigenetic clocks in mice. Highly accurate clocks might not be optimal for detecting the beneficial effects of anti-aging interventions.


Asunto(s)
Relojes Biológicos/genética , Metilación de ADN , Epigénesis Genética , Longevidad/genética , Factores de Edad , Animales , Relojes Biológicos/efectos de los fármacos , Restricción Calórica , Islas de CpG , Metilación de ADN/efectos de los fármacos , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Enanismo/genética , Enanismo/metabolismo , Epigénesis Genética/efectos de los fármacos , Femenino , Estudio de Asociación del Genoma Completo , Longevidad/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Sirolimus/farmacología , Especificidad de la Especie
15.
DNA Res ; 25(5): 451-464, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29893819

RESUMEN

Transposable elements constitute an important fraction of eukaryotic genomes. Given their mutagenic potential, host-genomes have evolved epigenetic defense mechanisms to limit their expansion. In fungi, epigenetic modifications have been widely studied in ascomycetes, although we lack a global picture of the epigenetic landscape in basidiomycetes. In this study, we analysed the genome-wide epigenetic and transcriptional patterns of the white-rot basidiomycete Pleurotus ostreatus throughout its life cycle. Our results performed by using high-throughput sequencing analyses revealed that strain-specific DNA methylation profiles are primarily involved in the repression of transposon activity and suggest that 21 nt small RNAs play a key role in transposon silencing. Furthermore, we provide evidence that transposon-associated DNA methylation, but not sRNA production, is directly involved in the silencing of genes surrounded by transposons. Remarkably, we found that nucleus-specific methylation levels varied in dikaryotic strains sharing identical genetic complement but different subculture conditions. Finally, we identified key genes activated in the fruiting process through the comparative analysis of transcriptomes. This study provides an integrated picture of epigenetic defense mechanisms leading to the transcriptional silencing of transposons and surrounding genes in basidiomycetes. Moreover, our findings suggest that transcriptional but not methylation reprogramming triggers fruitbody development in P. ostreatus.


Asunto(s)
Elementos Transponibles de ADN , Epigénesis Genética , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Estadios del Ciclo de Vida/genética , Pleurotus/crecimiento & desarrollo , Pleurotus/genética , Metilación de ADN , Perfilación de la Expresión Génica , Genoma Fúngico , Transcripción Genética , Transcriptoma , Secuenciación Completa del Genoma
17.
Hum Mol Genet ; 27(10): 1830-1846, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29566149

RESUMEN

Most epigenome-wide association studies to date have been conducted in blood. However, metabolic syndrome is mediated by a dysregulation of adiposity and therefore it is critical to study adipose tissue in order to understand the effects of this syndrome on epigenomes. To determine if natural variation in DNA methylation was associated with metabolic syndrome traits, we profiled global methylation levels in subcutaneous abdominal adipose tissue. We measured association between 32 clinical traits related to diabetes and obesity in 201 people from the Metabolic Syndrome in Men cohort. We performed epigenome-wide association studies between DNA methylation levels and traits, and identified associations for 13 clinical traits in 21 loci. We prioritized candidate genes in these loci using expression quantitative trait loci, and identified 18 high confidence candidate genes, including known and novel genes associated with diabetes and obesity traits. Using methylation deconvolution, we examined which cell types may be mediating the associations, and concluded that most of the loci we identified were specific to adipocytes. We determined whether the abundance of cell types varies with metabolic traits, and found that macrophages increased in abundance with the severity of metabolic syndrome traits. Finally, we developed a DNA methylation-based biomarker to assess type 2 diabetes risk in adipose tissue. In conclusion, our results demonstrate that profiling DNA methylation in adipose tissue is a powerful tool for understanding the molecular effects of metabolic syndrome on adipose tissue, and can be used in conjunction with traditional genetic analyses to further characterize this disorder.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética , Síndrome Metabólico/genética , Obesidad/genética , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Adulto , Anciano , Biopsia , Índice de Masa Corporal , Islas de CpG/genética , Regulación de la Expresión Génica , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Síndrome Metabólico/metabolismo , Síndrome Metabólico/fisiopatología , Persona de Mediana Edad , Obesidad/metabolismo , Obesidad/fisiopatología , Sitios de Carácter Cuantitativo/genética
18.
Reprod Sci ; 25(4): 523-539, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28693373

RESUMEN

Inherent genetic programming and environmental factors affect fetal growth in utero. Epidemiologic data in growth-altered fetuses, either intrauterine growth restricted (IUGR) or large for gestational age (LGA), demonstrate that these newborns are at increased risk of cardiometabolic disease in adulthood. There is growing evidence that the in utero environment leads to epigenetic modification, contributing to eventual risk of developing heart disease or diabetes. In this study, we used reduced representation bisulfite sequencing to examine genome-wide DNA methylation variation in placental samples from offspring born IUGR, LGA, and appropriate for gestational age (AGA) and to identify differential methylation of genes important for conferring risk of cardiometabolic disease. We found that there were distinct methylation signatures for IUGR, LGA, and AGA groups and identified over 500 differentially methylated genes (DMGs) among these group comparisons. Functional and gene network analyses revealed expected relationships of DMGs to placental physiology and transport, but also identified novel pathways with biologic plausibility and potential clinical importance to cardiometabolic disease. Specific loci for DMGs of interest had methylation patterns that were strongly associated with anthropometric presentations. We further validated altered gene expression of these specific DMGs contributing to vascular and metabolic diseases (SLC36A1, PTPRN2, CASZ1, IL10), thereby establishing transcriptional effects toward assigning functional significance. Our results suggest that the gene expression and methylation state of the human placenta are related and sensitive to the intrauterine environment, as it affects fetal growth patterns. We speculate that these observed changes may affect risk for offspring in developing adult cardiometabolic disease.


Asunto(s)
Peso al Nacer/genética , Metilación de ADN , Desarrollo Fetal/genética , Placenta/metabolismo , Epigénesis Genética , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Expresión Génica , Regulación de la Expresión Génica , Humanos , Recién Nacido , Embarazo
20.
FASEB J ; 31(10): 4359-4369, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28634213

RESUMEN

Macrophages (Mϕs) of patients with Alzheimer's disease and mild cognitive impairment (MCI) are defective in amyloid-ß1-42 (Aß) phagocytosis and have low resistance to apoptosis by Aß. Omega-3 fatty acids (ω-3s) in vitro and in vivo and the ω-3 mediator, resolvin D1, in vitro increase Aß phagocytosis by Mϕs of patients with MCI. We have investigated the unfolded protein response (UPR) to endoplasmic reticulum (ER) stress by Mϕs in a longitudinal study of fish-derived, ω-3-supplemented patients with MCI. Patients in the apolipoprotein E (ApoE)e3/e3 subgroup over time exhibited an increase of protein kinase RNA-like ER kinase (PERK) expression, Aß phagocytosis, intermediate M1-M2 Mϕ type, and a Mini-Mental State Examination (MMSE) rate of change of +1.8 points per year, whereas patients in the ApoEe3/e4 subgroup showed individually divergent results with an MMSE rate of change of -3.2 points per year. In vitro treatment of Mϕs by fish-derived ω-3 emulsion increased Aß phagocytosis, PERK expression, and UPR RNA signature, and decreased ER stress signature. Augmented genes in the UPR signature included chaperones, lectins, foldases, and N-linked glycosylation enzymes. In summary, fish-derived ω-3s increase cytoprotective genes and decrease proapoptotic genes, improve immune clearance of Aß, and are associated with an improved MMSE rate of change in ApoEe3/e3 vs. ApoEe3/e4 patients.-Olivera-Perez, H. M., Lam, L., Dang, J., Jiang, W., Rodriguez, F., Rigali, E., Weitzman, S., Porter, V., Rubbi, L., Morselli, M., Pellegrini, M., Fiala, M. Omega-3 fatty acids increase the unfolded protein response and improve amyloid-ß phagocytosis by macrophages of patients with mild cognitive impairment.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Macrófagos/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , Fagocitosis/efectos de los fármacos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Proteínas Amiloidogénicas/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Ácidos Grasos Omega-3/metabolismo , Humanos , Macrófagos/metabolismo , Desplegamiento Proteico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...