Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(3): e0282354, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36989249

RESUMEN

Large-bodied temnospondyl amphibians were the dominant predators in non-marine aquatic ecosystems from the Carboniferous to the Middle Triassic. In the Permian-aged lower Beaufort Group of the main Karoo Basin, South Africa, temnospondyls are represented exclusively by the family Rhinesuchidae and are well represented by body fossils, whereas trace fossils are scarce. Accordingly, most interpretations of the behaviour of this family are based on skeletal morphology and histological data. Here we document the sedimentology and palaeontology of a late Permian palaeosurface situated immediately below the palaeoshoreline of the Ecca Sea (transition from the Ecca Group to the Beaufort Group) near the town of Estcourt in KwaZulu-Natal Province. The surface preserves numerous ichnofossils, including tetrapod footprints and fish swim-trails, but most striking are seven body impressions and associated swim trails that we attribute to a medium-sized (~1.9 m long) rhinesuchid temnospondyl. These provide valuable insight into the behaviour of these animals. The sinuous shape of some of the traces suggest that the tracemaker swam with continuous sub-undulatory propulsion of the tail.


Asunto(s)
Anfibios , Ecosistema , Animales , Sudáfrica , Paleontología , Fósiles
2.
Commun Biol ; 5(1): 1154, 2022 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-36310243

RESUMEN

Continental ecosystems of the middle Permian Period (273-259 million years ago) are poorly understood. In South Africa, the vertebrate fossil record is well documented for this time interval, but the plants and insects are virtually unknown, and are rare globally. This scarcity of data has hampered studies of the evolution and diversification of life, and has precluded detailed reconstructions and analyses of ecosystems of this critical period in Earth's history. Here we introduce a new locality in the southern Karoo Basin that is producing exceptionally well-preserved and abundant fossils of novel freshwater and terrestrial insects, arachnids, and plants. Within a robust regional geochronological, geological and biostratigraphic context, this Konservat- and Konzentrat-Lagerstätte offers a unique opportunity for the study and reconstruction of a southern Gondwanan deltaic ecosystem that thrived 266-268 million years ago, and will serve as a high-resolution ecological baseline towards a better understanding of Permian extinction events.


Asunto(s)
Ecosistema , Fósiles , Animales , Sudáfrica , Vertebrados , Plantas , Insectos
3.
PLoS One ; 15(12): e0243985, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33378326

RESUMEN

Sixteen specimens of the Early Triassic cynodont Galesaurus planiceps (including eight that were scanned using micro-computed tomography) representing different ontogenetic stages were assembled to study the dental replacement in the species. The growth series shows that the incisors and postcanines continue to develop and replace, even in the largest (presumably oldest) specimen. In contrast, replacement of the canines ceased with the attainment of skeletal maturity, at a basal skull length of ~90 mm, suggesting that Galesaurus had a finite number of canine replacement cycles. Additionally, the functional canine root morphology of these larger specimens showed a tendency to be open-rooted, a condition not previously reported in Mesozoic theriodonts. An alternating pattern of tooth replacement was documented in the maxillary and mandibular postcanine series. Both postcanine series increased in tooth number as the skull lengthened, with the mandibular postcanine series containing more teeth than the maxillary series. In the maxilla, the first postcanine is consistently the smallest tooth, showing a proportional reduction in size as skull length increased. The longer retention of a tooth in this first locus is a key difference between Galesaurus and Thrinaxodon, in which the mesial-most postcanines are lost after replacement. This difference has contributed to the lengthening of the postcanine series in Galesaurus, as teeth continued to be added to the distal end of the tooth row through ontogeny. Overall, there are considerable differences between Galesaurus and Thrinaxodon relating to the replacement and development of their teeth.


Asunto(s)
Dinosaurios/anatomía & histología , Fósiles/anatomía & histología , Diente/anatomía & histología , Animales , Dinosaurios/clasificación , Maxilar/anatomía & histología , Filogenia
4.
Brain Behav Evol ; 90(4): 311-333, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29130981

RESUMEN

The origin and evolution of the mammalian brain has long been the focus of scientific enquiry. Conversely, little research has focused on the palaeoneurology of the stem group of Mammaliaformes, the Permian and Triassic non-mammaliaform Therapsida (NMT). This is because the majority of the NMT have a non-ossified braincase, making the study of their endocranial cast (sometimes called the "fossil brain") problematic. Thus, descriptions of the morphology and size of NMT endocranial casts have been based largely on approximations rather than reliable determination. Accordingly, here we use micro-CT scans of the skulls of 1 Dinocephalia and 3 Biarmosuchia, which are NMT with a fully ossified braincase and thus a complete endocast. For the first time, our work enables the accurate determination of endocranial shape and size in NMT. This study suggests that NMT brain size falls in the upper range of the reptilian and amphibian variation. Brain size in the dicynodont Kawingasaurus is equivalent to that of early Mammaliaformes, whereas the Dinocephalia show evidence of a secondary reduction of brain size. In addition, unlike other NMT in which the endocast has a tubular shape and its parts are arranged in a linear manner, the biarmosuchian endocast is strongly flexed at the level of the midbrain, creating a near right angle between the fore- and hindbrain. These data highlight an unexpected diversity of endocranial size and morphology in NMT, features that are usually considered conservative in this group.


Asunto(s)
Encéfalo/anatomía & histología , Cráneo/anatomía & histología , Animales , Evolución Biológica , Fósiles , Imagenología Tridimensional , Mamíferos/anatomía & histología , Mesencéfalo/anatomía & histología , Filogenia , Rombencéfalo/anatomía & histología , Microtomografía por Rayos X
5.
Sci Rep ; 7(1): 10861, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28883403

RESUMEN

Late Permian Karoo Basin tectonics in South Africa are reflected as two fining-upward megacycles in the Balfour and upper Teekloof formations. Foreland tectonics are used to explain the cyclic nature and distribution of sedimentation, caused by phases of loading and unloading in the southern source areas adjacent to the basin. New data supports this model, and identifies potential climatic effects on the tectonic regime. Diachronous second-order subaerial unconformities (SU) are identified at the base and top of the Balfour Formation. One third-order SU identified coincides with a faunal turnover which could be related to the Permo-Triassic mass extinction (PTME). The SU are traced, for the first time, to the western portion of the basin (upper Teekloof Formation). Their age determinations support the foreland basin model as they coincide with dated paroxysms. A condensed distal (northern) stratigraphic record is additional support for this tectonic regime because orogenic loading and unloading throughout the basin was not equally distributed, nor was it in-phase. This resulted in more frequent non-deposition with increased distance from the tectonically active source. Refining basin dynamics allows us to distinguish between tectonic and climatic effects and how they have influenced ancient ecosystems and sedimentation through time.

6.
PeerJ ; 5: e3496, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28828230

RESUMEN

Dinocephalian therapsids are renowned for their massive, pachyostotic and ornamented skulls adapted for head-to-head fighting during intraspecific combat. Synchrotron scanning of the tapinocephalid Moschops capensis reveals, for the first time, numerous anatomical adaptations of the central nervous system related to this combative behaviour. Many neural structures (such as the brain, inner ear and ophthalmic branch of the trigeminal nerve) were completely enclosed and protected by bones, which is unusual for non-mammaliaform therapsids. The nearly complete ossification of the braincase enables precise determination of the brain cavity volume and encephalization quotient, which appears greater than expected for such a large and early herbivore. The practice of head butting is often associated with complex social behaviours and gregariousness in extant species, which are known to influence brain size evolution. Additionally, the plane of the lateral (horizontal) semicircular canal of the bony labyrinth is oriented nearly vertically if the skull is held horizontally, which suggests that the natural position of the head was inclined about 60-65°to the horizontal. This is consistent with the fighting position inferred from osteology, as well as ground-level browsing. Finally, the unusually large parietal tube may have been filled with thick conjunctive tissue to protect the delicate pineal eye from injury sustained during head butting.

7.
Elife ; 62017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28716184

RESUMEN

The only true living endothermic vertebrates are birds and mammals, which produce and regulate their internal temperature quite independently from their surroundings. For mammal ancestors, anatomical clues suggest that endothermy originated during the Permian or Triassic. Here we investigate the origin of mammalian thermoregulation by analysing apatite stable oxygen isotope compositions (δ18Op) of some of their Permo-Triassic therapsid relatives. Comparing of the δ18Op values of therapsid bone and tooth apatites to those of co-existing non-therapsid tetrapods, demonstrates different body temperatures and thermoregulatory strategies. It is proposed that cynodonts and dicynodonts independently acquired constant elevated thermometabolism, respectively within the Eucynodontia and Lystrosauridae + Kannemeyeriiformes clades. We conclude that mammalian endothermy originated in the Epicynodontia during the middle-late Permian. Major global climatic and environmental fluctuations were the most likely selective pressures on the success of such elevated thermometabolism.


Asunto(s)
Evolución Biológica , Regulación de la Temperatura Corporal , Fósiles , Mamíferos/fisiología , Isótopos de Oxígeno/análisis , Animales
8.
Proc Biol Sci ; 284(1852)2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28381616

RESUMEN

The terrestrial vertebrate fauna underwent a substantial change in composition between the lower and middle Permian. The lower Permian fauna was characterized by diverse and abundant amphibians and pelycosaurian-grade synapsids. During the middle Permian, a therapsid-dominated fauna, containing a diverse array of parareptiles and a considerably reduced richness of amphibians, replaced this. However, it is debated whether the transition is a genuine event, accompanied by a mass extinction, or whether it is merely an artefact of the shift in sampling from the palaeoequatorial latitudes to the palaeotemperate latitudes. Here we use an up-to-date biostratigraphy and incorporate recent discoveries to thoroughly review the Permian tetrapod fossil record. We suggest that the faunal transition represents a genuine event; the lower Permian temperate faunas are more similar to lower Permian equatorial faunas than middle Permian temperate faunas. The transition was not consistent across latitudes; the turnover occurred more rapidly in Russia, but was delayed in North America. The argument that the mass extinction is an artefact of a latitudinal biodiversity gradient and a shift in sampling localities is rejected: sampling correction demonstrates an inverse latitudinal biodiversity gradient was prevalent during the Permian, with peak diversity in the temperate latitudes.


Asunto(s)
Biodiversidad , Extinción Biológica , Animales , Fósiles , América del Norte , Federación de Rusia
9.
PLoS One ; 12(2): e0172047, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28187210

RESUMEN

Euchambersia mirabilis is an iconic species of Permo-Triassic therapsid because of its unusually large external maxillary fossa linked through a sulcus to a ridged canine. This anatomy led to the commonly accepted conclusion that the large fossa accommodated a venom gland. However, this hypothesis remains untested so far. Here, we conducted a µCT scan assisted reappraisal of the envenoming capacity of Euchambersia, with a special focus on the anatomy of the maxillary fossa and canines. This study shows that the fossa, presumably for the venom-producing gland, is directly linked to the maxillary canal, which carries the trigeminal nerve (responsible for the sensitivity of the face). The peculiar anatomy of the maxillary canal suggests important reorganisation in the somatosensory system and that a ganglion could possibly have been present in the maxillary fossa instead of a venom gland. Nevertheless, the venom gland hypothesis is still preferred since we describe, for the first time, the complete crown morphology of the incisiform teeth of Euchambersia, which strongly suggests that the complete dentition was ridged. Therefore Euchambersia manifests evidence of all characteristics of venomous animals: a venom gland (in the maxillary fossa), a mechanism to deliver the venom (the maxillary canal and/or the sulcus located ventrally to the fossa); and an apparatus with which to inflict a wound for venom delivery (the ridged dentition).


Asunto(s)
Glándulas Exocrinas/anatomía & histología , Fósiles/anatomía & histología , Maxilar/anatomía & histología , Ponzoñas/metabolismo , Animales , Dentición , Glándulas Exocrinas/diagnóstico por imagen , Fósiles/diagnóstico por imagen , Maxilar/diagnóstico por imagen , Reptiles , Microtomografía por Rayos X
10.
PLoS One ; 11(8): e0161457, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27548428

RESUMEN

Choerosaurus dejageri, a non-mammalian eutheriodont therapsid from the South African late Permian (~259 Ma), has conspicuous hemispheric cranial bosses on the maxilla and the mandible. These bosses, the earliest of this nature in a eutheriodont, potentially make C. dejageri a key species for understanding the evolutionary origins of sexually selective behaviours (intraspecific competition, ritualized sexual and intimidation displays) associated with cranial outgrowths at the root of the clade that eventually led to extant mammals. Comparison with the tapinocephalid dinocephalian Moschops capensis, a therapsid in which head butting is strongly supported, shows that the delicate structure of the cranial bosses and the gracile structure of the skull of Choerosaurus would be more suitable for display and low energy combat than vigorous head butting. Thus, despite the fact that Choerosaurus is represented by only one skull (which makes it impossible to address the question of sexual dimorphism), its cranial bosses are better interpreted as structures involved in intraspecific selection, i.e. low-energy fighting or display. Display structures, such as enlarged canines and cranial bosses, are widespread among basal therapsid clades and are also present in the putative basal therapsid Tetraceratops insignis. This suggests that sexual selection may have played a more important role in the distant origin and evolution of mammals earlier than previously thought. Sexual selection may explain the subsequent independent evolution of cranial outgrowths and pachyostosis in different therapsid lineages (Biarmosuchia, Dinocephalia, Gorgonopsia and Dicynodontia).


Asunto(s)
Conducta Competitiva/fisiología , Fósiles/anatomía & histología , Mamíferos/anatomía & histología , Filogenia , Cráneo/anatomía & histología , Animales , Evolución Biológica , Extinción Biológica , Mamíferos/clasificación , Mamíferos/fisiología , Caracteres Sexuales , Cráneo/fisiología , Sudáfrica
11.
Curr Biol ; 26(14): 1887-94, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27426515

RESUMEN

The turtle shell is a complex structure that currently serves a largely protective function in this iconically slow-moving group [1]. Developmental [2, 3] and fossil [4-7] data indicate that one of the first steps toward the shelled body plan was broadening of the ribs (approximately 50 my before the completed shell [5]). Broadened ribs alone provide little protection [8] and confer significant locomotory [9, 10] and respiratory [9, 11] costs. They increase thoracic rigidity [8], which decreases speed of locomotion due to shortened stride length [10], and they inhibit effective costal ventilation [9, 11]. New fossil material of the oldest hypothesized stem turtle, Eunotosaurus africanus [12] (260 mya) [13, 14] from the Karoo Basin of South Africa, indicates the initiation of rib broadening was an adaptive response to fossoriality. Similar to extant fossorial taxa [8], the broad ribs of Eunotosaurus provide an intrinsically stable base on which to operate a powerful forelimb digging mechanism. Numerous fossorial correlates [15-17] are expressed throughout Eunotosaurus' skeleton. Most of these features are widely distributed along the turtle stem and into the crown clade, indicating the common ancestor of Eunotosaurus and modern turtles possessed a body plan significantly influenced by digging. The adaptations related to fossoriality likely facilitated movement of stem turtles into aquatic environments early in the groups' evolutionary history, and this ecology may have played an important role in stem turtles surviving the Permian/Triassic extinction event.


Asunto(s)
Exoesqueleto/anatomía & histología , Evolución Biológica , Fósiles/anatomía & histología , Rasgos de la Historia de Vida , Tortugas/anatomía & histología , Animales , Locomoción , Filogenia , Sudáfrica
12.
Naturwissenschaften ; 102(11-12): 69, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26538062

RESUMEN

The third eye (pineal eye), an organ responsible for regulating exposure to sunlight in extant ectotherms, is located in an opening on the dorsal surface of the skull, the parietal foramen. The parietal foramen is absent in extant mammals but often observed in basal therapsids, the stem-group to true mammals. Here, we report the absence of the parietal foramen in a specimen of Cynosaurus suppostus, a Late Permian cynodont from South Africa (SA). Comparison with Procynosuchus delaharpeae, a contemporaneous non-mammalian cynodont from SA, demonstrates that the absence of this foramen is an abnormal condition for such a basal species. Because seasonality was marked during the Late Permian in SA, it is proposed that the third eye was functionally redundant in Cynosaurus, possibly due to the acquisition of better thermoregulation or the evolution of specialized cells in the lateral eyes to compensate for the role of the third eye.


Asunto(s)
Fósiles/anatomía & histología , Lagartos/anatomía & histología , Animales , Lagartos/fisiología , Glándula Pineal/anatomía & histología , Análisis de Regresión , Sudáfrica , Tomografía Computarizada por Rayos X
13.
Proc Biol Sci ; 282(1811)2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26156768

RESUMEN

A mid-Permian (Guadalupian epoch) extinction event at approximately 260 Ma has been mooted for two decades. This is based primarily on invertebrate biostratigraphy of Guadalupian-Lopingian marine carbonate platforms in southern China, which are temporally constrained by correlation to the associated Emeishan Large Igneous Province (LIP). Despite attempts to identify a similar biodiversity crisis in the terrestrial realm, the low resolution of mid-Permian tetrapod biostratigraphy and a lack of robust geochronological constraints have until now hampered both the correlation and quantification of terrestrial extinctions. Here we present an extensive compilation of tetrapod-stratigraphic data analysed by the constrained optimization (CONOP) algorithm that reveals a significant extinction event among tetrapods within the lower Beaufort Group of the Karoo Basin, South Africa, in the latest Capitanian. Our fossil dataset reveals a 74-80% loss of generic richness between the upper Tapinocephalus Assemblage Zone (AZ) and the mid-Pristerognathus AZ that is temporally constrained by a U-Pb zircon date (CA-TIMS method) of 260.259 ± 0.081 Ma from a tuff near the top of the Tapinocephalus AZ. This strengthens the biochronology of the Permian Beaufort Group and supports the existence of a mid-Permian mass extinction event on land near the end of the Guadalupian. Our results permit a temporal association between the extinction of dinocephalian therapsids and the LIP volcanism at Emeishan, as well as the marine end-Guadalupian extinctions.


Asunto(s)
Biodiversidad , Extinción Biológica , Fósiles , Reptiles , Animales , Sudáfrica
14.
Nat Commun ; 5: 5211, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25376734

RESUMEN

The turtle body plan differs markedly from that of other vertebrates and serves as a model system for studying structural and developmental evolution. Incorporation of the ribs into the turtle shell negates the costal movements that effect lung ventilation in other air-breathing amniotes. Instead, turtles have a unique abdominal-muscle-based ventilatory apparatus whose evolutionary origins have remained mysterious. Here we show through broadly comparative anatomical and histological analyses that an early member of the turtle stem lineage has several turtle-specific ventilation characters: rigid ribcage, inferred loss of intercostal muscles and osteological correlates of the primary expiratory muscle. Our results suggest that the ventilation mechanism of turtles evolved through a division of labour between the ribs and muscles of the trunk in which the abdominal muscles took on the primary ventilatory function, whereas the broadened ribs became the primary means of stabilizing the trunk. These changes occurred approximately 50 million years before the evolution of the fully ossified shell.


Asunto(s)
Músculos Abdominales/anatomía & histología , Evolución Biológica , Pulmón/anatomía & histología , Músculos Respiratorios/anatomía & histología , Costillas/anatomía & histología , Tortugas/anatomía & histología , Músculos Abdominales/diagnóstico por imagen , Músculos Abdominales/fisiología , Anatomía Comparada , Exoesqueleto/anatomía & histología , Exoesqueleto/diagnóstico por imagen , Exoesqueleto/fisiología , Animales , Femenino , Pulmón/diagnóstico por imagen , Pulmón/fisiología , Filogenia , Ventilación Pulmonar/fisiología , Músculos Respiratorios/diagnóstico por imagen , Músculos Respiratorios/fisiología , Costillas/diagnóstico por imagen , Costillas/fisiología , Tomografía Computarizada por Rayos X , Tortugas/genética , Tortugas/fisiología
15.
PLoS One ; 8(6): e64978, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23805181

RESUMEN

Fossorialism is a beneficial adaptation for brooding, predator avoidance and protection from extreme climate. The abundance of fossilised burrow casts from the Early Triassic of southern Africa is viewed as a behavioural response by many tetrapods to the harsh conditions following the Permo-Triassic mass-extinction event. However, scarcity of vertebrate remains associated with these burrows leaves many ecological questions unanswered. Synchrotron scanning of a lithified burrow cast from the Early Triassic of the Karoo unveiled a unique mixed-species association: an injured temnospondyl amphibian (Broomistega) that sheltered in a burrow occupied by an aestivating therapsid (Thrinaxodon). The discovery of this rare rhinesuchid represents the first occurrence in the fossil record of a temnospondyl in a burrow. The amphibian skeleton shows signs of a crushing trauma with partially healed fractures on several consecutive ribs. The presence of a relatively large intruder in what is interpreted to be a Thrinaxodon burrow implies that the therapsid tolerated the amphibian's presence. Among possible explanations for such unlikely cohabitation, Thrinaxodon aestivation is most plausible, an interpretation supported by the numerous Thrinaxodon specimens fossilised in curled-up postures. Recent advances in synchrotron imaging have enabled visualization of the contents of burrow casts, thus providing a novel tool to elucidate not only anatomy but also ecology and biology of ancient tetrapods.


Asunto(s)
Anfibios , Fósiles , Mamíferos , Comportamiento de Nidificación , Sincrotrones , Animales , Sudáfrica
16.
Proc Natl Acad Sci U S A ; 109(5): 1584-8, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22307615

RESUMEN

The medial Permian (~270-260 Ma: Guadalupian) was a time of important tetrapod faunal changes, in particular reflecting a turnover from pelycosaurian- to therapsid-grade synapsids. Until now, most knowledge on tetrapod distribution during the medial Permian has come from fossils found in the South African Karoo and the Russian Platform, whereas other areas of Pangaea are still poorly known. We present evidence for the presence of a terrestrial carnivorous vertebrate from the Middle Permian of South America based on a complete skull. Pampaphoneus biccai gen. et sp. nov. was a dinocephalian "mammal-like reptile" member of the Anteosauridae, an early therapsid predator clade known only from the Middle Permian of Russia, Kazakhstan, China, and South Africa. The genus is characterized, among other features, by postorbital bosses, short, bulbous postcanines, and strongly recurved canines. Phylogenetic analysis indicates that the Brazilian dinocephalian occupies a middle position within the Anteosauridae, reinforcing the model of a global distribution for therapsids as early as the Guadalupian. The close phylogenetic relationship of the Brazilian species to dinocephalians from South Africa and the Russian Platform suggests a closer faunistic relationship between South America and eastern Europe than previously thought, lending support to a Pangaea B-type continental reconstruction.


Asunto(s)
Carnívoros , Fósiles , Animales , Brasil , Carnívoros/clasificación , Filogenia
17.
Science ; 331(6024): 1603-5, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21436452

RESUMEN

Anomodonts, a group of herbivorous therapsid "mammal-like reptiles," were the most abundant tetrapods of the Permian. We present a basal anomodont from South America, a new taxon that has transversally expanded palatal teeth and long saber canines. The function of the saber teeth is unknown, but probable uses include deterring attack from predators and intraspecific display or combat. The complex palatal teeth were used to process high-fiber food and represent early evidence of dental occlusion in a therapsid. This discovery provides new insight into the evolution of heterogeneous dentition in therapsids and broadens our understanding of ecological interactions at the end of the Paleozoic.


Asunto(s)
Diente Canino/anatomía & histología , Oclusión Dental , Vertebrados/anatomía & histología , Animales , Evolución Biológica , Brasil , Dentición , Conducta Alimentaria , Fósiles , Paleodontología , Filogenia , Cráneo/anatomía & histología , Diente/anatomía & histología , Vertebrados/clasificación , Vertebrados/fisiología
18.
Nature ; 443(7114): 981-4, 2006 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-17066033

RESUMEN

Lampreys are the most scientifically accessible of the remaining jawless vertebrates, but their evolutionary history is obscure. In contrast to the rich fossil record of armoured jawless fishes, all of which date from the Devonian period and earlier, only two Palaeozoic lampreys have been recorded, both from the Carboniferous period. In addition to these, the recent report of an exquisitely preserved Lower Cretaceous example demonstrates that anatomically modern lampreys were present by the late Mesozoic era. Here we report a marine/estuarine fossil lamprey from the Famennian (Late Devonian) of South Africa, the identity of which is established easily because many of the key specializations of modern forms are already in place. These specializations include the first evidence of a large oral disc, the first direct evidence of circumoral teeth and a well preserved branchial basket. This small agnathan, Priscomyzon riniensis gen. et sp. nov., is not only more conventionally lamprey-like than other Palaeozoic examples, but is also some 35 million years older. This finding is evidence that agnathans close to modern lampreys had evolved before the end of the Devonian period. In this light, lampreys as a whole appear all the more remarkable: ancient specialists that have persisted as such and survived a subsequent 360 million years.


Asunto(s)
Fósiles , Lampreas , Animales , Historia Antigua , Lampreas/anatomía & histología , Lampreas/crecimiento & desarrollo , Larva/anatomía & histología , Filogenia , Sudáfrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...