RESUMEN
Recent studies at individual cell resolution have revealed phenotypic heterogeneity in nominally clonal tumor cell populations. The heterogeneity affects cell growth behaviors, which can result in departure from the idealized uniform exponential growth of the cell population. Here we measured the stochastic time courses of growth of an ensemble of populations of HL60 leukemia cells in cultures, starting with distinct initial cell numbers to capture a departure from the uniform exponential growth model for the initial growth ("take-off"). Despite being derived from the same cell clone, we observed significant variations in the early growth patterns of individual cultures with statistically significant differences in growth dynamics, which could be explained by the presence of inter-converting subpopulations with different growth rates, and which could last for many generations. Based on the hypothesis of existence of multiple subpopulations, we developed a branching process model that was consistent with the experimental observations.
Asunto(s)
Crecimiento Demográfico , Ciclo Celular , Proliferación Celular , Células Clonales , Fenotipo , Procesos EstocásticosRESUMEN
Knowledge graphs have become a common approach for knowledge representation. Yet, the application of graph methodology is elusive due to the sheer number and complexity of knowledge sources. In addition, semantic incompatibilities hinder efforts to harmonize and integrate across these diverse sources. As part of The Biomedical Translator Consortium, we have developed a knowledge graph-based question-answering system designed to augment human reasoning and accelerate translational scientific discovery: the Translator system. We have applied the Translator system to answer biomedical questions in the context of a broad array of diseases and syndromes, including Fanconi anemia, primary ciliary dyskinesia, multiple sclerosis, and others. A variety of collaborative approaches have been used to research and develop the Translator system. One recent approach involved the establishment of a monthly "Question-of-the-Month (QotM) Challenge" series. Herein, we describe the structure of the QotM Challenge; the six challenges that have been conducted to date on drug-induced liver injury, cannabidiol toxicity, coronavirus infection, diabetes, psoriatic arthritis, and ATP1A3-related phenotypes; the scientific insights that have been gleaned during the challenges; and the technical issues that were identified over the course of the challenges and that can now be addressed to foster further development of the prototype Translator system. We close with a discussion on Large Language Models such as ChatGPT and highlight differences between those models and the Translator system.
RESUMEN
Recent studies at individual cell resolution have revealed phenotypic heterogeneity in nominally clonal tumor cell populations. The heterogeneity affects cell growth behaviors, which can result in departure from the idealized uniform exponential growth of the cell population. Here we measured the stochastic time courses of growth of an ensemble of populations of HL60 leukemia cells in cultures, starting with distinct initial cell numbers to capture a departure from the uniform exponential growth model for the initial growth ("take-off"). Despite being derived from the same cell clone, we observed significant variations in the early growth patterns of individual cultures with statistically significant differences in growth dynamics, which could be explained by the presence of inter-converting subpopulations with different growth rates, and which could last for many generations. Based on the hypothesis of existence of multiple subpopulations, we developed a branching process model that was consistent with the experimental observations.
RESUMEN
Recent studies at individual cell resolution have revealed phenotypic heterogeneity in nominally clonal tumor cell populations. The heterogeneity affects cell growth behaviors, which can result in departure from the idealized exponential growth. Here we measured the stochastic time courses of growth of an ensemble of populations of HL60 leukemia cells in cultures, starting with distinct initial cell numbers to capture the departure from the exponential growth model in the initial growth phase. Despite being derived from the same cell clone, we observed significant variations in the early growth patterns of individual cultures with statistically significant differences in growth kinetics and the presence of subpopulations with different growth rates that endured for many generations. Based on the hypothesis of existence of multiple inter-converting subpopulations, we developed a branching process model that captures the experimental observations.
RESUMEN
The 2019 "Personal Genomes: Accessing, Sharing and Interpretation" conference (Hinxton, UK, 11-12 April 2019) brought together geneticists, bioinformaticians, clinicians and ethicists to promote openness and ethical sharing of personal genome data while protecting the privacy of individuals. The talks at the conference focused on two main topic areas: (1) Technologies and Applications, with emphasis on personal genomics in the context of healthcare. The issues discussed ranged from new technologies impacting and enabling the field, to the interpretation of personal genomes and their integration with other data types. There was particular emphasis and wide discussion on the use of polygenic risk scores to inform precision medicine. (2) Ethical, Legal, and Social Implications, with emphasis on genetic privacy: How to maintain it, how much privacy is possible, and how much privacy do people want? Talks covered the full range of genomic data visibility, from open access to tight control, and diverse aspects of balancing benefits and risks, data ownership, working with individuals and with populations, and promoting citizen science. Both topic areas were illustrated and informed by reports from a wide variety of ongoing projects, which highlighted the need to diversify global databases by increasing representation of understudied populations.
Asunto(s)
Privacidad Genética/normas , Genoma Humano , Privacidad Genética/ética , Privacidad Genética/legislación & jurisprudencia , Humanos , Difusión de la InformaciónRESUMEN
During a cell state transition, cells travel along trajectories in a gene expression state space. This dynamical systems framework complements the traditional concept of molecular pathways that drive cell phenotype switching. To expose the structure that hinders cancer cells from exiting robust proliferative state, we assessed the perturbation capacity of a drug library and identified 16 non-cytotoxic compounds that stimulate MCF7 breast cancer cells to exit from proliferative state to differentiated state. The transcriptome trajectories triggered by these drugs diverged, then converged. Chemical structures and drug targets of these compounds overlapped minimally. However, a network analysis of targeted pathways identified a core signaling pathway--indicating common stress-response and down-regulation of STAT1 before differentiation. This multi-trajectory analysis explores the cells' state transition with a multitude of perturbations in combination with traditional pathway analysis, leading to an encompassing picture of the dynamics of a therapeutically desired cell-state switching.