Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mSystems ; 7(1): e0048821, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35103489

RESUMEN

The spread of antibiotic-resistant Acinetobacter baumannii poses a significant threat to public health worldwide. This nosocomial bacterial pathogen can be associated with life-threatening infections, particularly in intensive care units. A. baumannii is mainly described as an extracellular pathogen with restricted survival within cells. This study shows that a subset of A. baumannii clinical isolates extensively multiply within nonphagocytic immortalized and primary cells without the induction of apoptosis and with bacterial clusters visible up to 48 h after infection. This phenotype was observed for the A. baumannii C4 strain associated with high mortality in a hospital outbreak and the A. baumannii ABC141 strain, which was isolated from the skin but was found to be hyperinvasive. Intracellular multiplication of these A. baumannii strains occurred within spacious single membrane-bound vacuoles, labeled with the lysosomal associate membrane protein (LAMP1). However, these compartments excluded lysotracker, an indicator of acidic pH, suggesting that A. baumannii can divert its trafficking away from the lysosomal degradative pathway. These compartments were also devoid of autophagy features. A high-content microscopy screen of 43 additional A. baumannii clinical isolates highlighted various phenotypes, and (i) the majority of isolates remained extracellular, (ii) a significant proportion was capable of invasion and limited persistence, and (iii) three more isolates efficiently multiplied within LAMP1-positive vacuoles, one of which was also hyperinvasive. These data identify an intracellular niche for specific A. baumannii clinical isolates that enables extensive multiplication in an environment protected from host immune responses and out of reach of many antibiotics. IMPORTANCE Multidrug-resistant Acinetobacter baumannii isolates are associated with significant morbidity and mortality in hospitals worldwide. Understanding their pathogenicity is critical for improving therapeutic management. Although A. baumannii can steadily adhere to surfaces and host cells, most bacteria remain extracellular. Recent studies have shown that a small proportion of bacteria can invade cells but present limited survival. We have found that some A. baumannii clinical isolates can establish a specialized intracellular niche that sustains extensive intracellular multiplication for a prolonged time without induction of cell death. We propose that this intracellular compartment allows A. baumannii to escape the cell's normal degradative pathway, protecting bacteria from host immune responses and potentially hindering antibiotic accessibility. This may contribute to A. baumannii persistence, relapsing infections, and enhanced mortality in susceptible patients. A high-content microscopy-based screen confirmed that this pathogenicity trait is present in other clinical A. baumannii isolates. There is an urgent need for new antibiotics or alternative antimicrobial approaches, particularly to combat carbapenem-resistant A. baumannii. The discovery of an intracellular niche for this pathogen, as well as hyperinvasive isolates, may help guide the development of antimicrobial therapies and diagnostics in the future.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antiinfecciosos , Humanos , Acinetobacter baumannii/genética , Incidencia , beta-Lactamasas/genética , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Infecciones por Acinetobacter/tratamiento farmacológico , Antibacterianos/farmacología , Antiinfecciosos/farmacología
2.
Environ Microbiol ; 22(10): 4264-4278, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32219965

RESUMEN

A major debate in evolutionary biology is whether virulence is maintained as an adaptive trait and/or evolves to non-virulence. In the environment, virulence traits of non-obligatory parasites are subjected to diverse selective pressures and trade-offs. Here, we focus on a population of Vibrio splendidus that displays moderate virulence for oysters. A MARTX (Multifunctional-autoprocessing repeats-in-toxin) and a type-six secretion system (T6SS) were found to be necessary for virulence toward oysters, while a region (wbe) involved in O-antigen synthesis is necessary for resistance to predation against amoebae. Gene inactivation within the wbe region had major consequences on the O-antigen structure, conferring lower immunogenicity, competitive advantage and increased virulence in oyster experimental infections. Therefore, O-antigen structures that favour resistance to environmental predators result in an increased activation of the oyster immune system and a reduced virulence in that host. These trade-offs likely contribute to maintaining O-antigen diversity in the marine environment by favouring genomic plasticity of the wbe region. The results of this study indicate an evolution of V. splendidus towards moderate virulence as a compromise between fitness in the oyster as a host, and resistance to its predators in the environment.


Asunto(s)
Antígenos O/metabolismo , Ostreidae/microbiología , Sistemas de Secreción Tipo VI/genética , Vibrio/patogenicidad , Amoeba/metabolismo , Animales , Cadena Alimentaria , Antígenos O/inmunología , Ostreidae/inmunología , Alimentos Marinos/microbiología , Vibrio/inmunología , Virulencia/genética , Virulencia/fisiología
3.
Environ Microbiol ; 22(10): 4183-4197, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31386262

RESUMEN

Vibrios are ubiquitous in marine environments and opportunistically colonize a broad range of hosts. Strains of Vibrio tasmaniensis present in oyster farms can thrive in oysters during juvenile mortality events and behave as facultative intracellular pathogen of oyster haemocytes. Herein, we wondered whether V. tasmaniensis LGP32 resistance to phagocytosis is specific to oyster immune cells or contributes to resistance to other phagocytes, like marine amoebae. To address this question, we developed an integrative study, from the first description of amoeba diversity in oyster farms to the characterization of LGP32 interactions with amoebae. An isolate of the Vannella genus, Vannella sp. AP1411, which was collected from oyster farms, is ubiquitous, and belongs to one clade of Vannella that could be found associated with Vibrionaceae. LGP32 was shown to be resistant to grazing by Vannella sp. AP1411 and this phenotype depends on some previously identified virulence factors: secreted metalloprotease Vsm and copper efflux p-ATPase CopA, which act at different steps during amoeba-vibrio interactions, whereas some other virulence factors were not involved. Altogether, our work indicates that some virulence factors can be involved in multi-host interactions of V. tasmaniensis ranging from protozoans to metazoans, potentially favouring their opportunistic behaviour.


Asunto(s)
Amebozoos/fisiología , Ostreidae/microbiología , Vibrio/fisiología , Amoeba/fisiología , Animales , Proteínas Bacterianas/genética , Conducta Predatoria , Vibrio/genética , Vibrio/patogenicidad , Factores de Virulencia/genética
4.
Proc Natl Acad Sci U S A ; 116(28): 14238-14247, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31221761

RESUMEN

Vibrio species cause infectious diseases in humans and animals, but they can also live as commensals within their host tissues. How Vibrio subverts the host defenses to mount a successful infection remains poorly understood, and this knowledge is critical for predicting and managing disease. Here, we have investigated the cellular and molecular mechanisms underpinning infection and colonization of 2 virulent Vibrio species in an ecologically relevant host model, oyster, to study interactions with marine Vibrio species. All Vibrio strains were recognized by the immune system, but only nonvirulent strains were controlled. We showed that virulent strains were cytotoxic to hemocytes, oyster immune cells. By analyzing host and bacterial transcriptional responses to infection, together with Vibrio gene knock-outs, we discovered that Vibrio crassostreae and Vibrio tasmaniensis use distinct mechanisms to cause hemocyte lysis. Whereas V. crassostreae cytotoxicity is dependent on a direct contact with hemocytes and requires an ancestral gene encoding a protein of unknown function, r5.7, V. tasmaniensis cytotoxicity is dependent on phagocytosis and requires intracellular secretion of T6SS effectors. We conclude that proliferation of commensal vibrios is controlled by the host immune system, preventing systemic infections in oysters, whereas the successful infection of virulent strains relies on Vibrio species-specific molecular determinants that converge to compromise host immune cell function, allowing evasion of the host immune system.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Ostreidae/microbiología , Vibriosis/genética , Vibrio/genética , Animales , Citoplasma/genética , Citoplasma/microbiología , Hemocitos/microbiología , Fagocitosis/genética , Especificidad de la Especie , Vibrio/patogenicidad , Vibriosis/patología
5.
Nat Commun ; 9(1): 4215, 2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30310074

RESUMEN

Infectious diseases are mostly explored using reductionist approaches despite repeated evidence showing them to be strongly influenced by numerous interacting host and environmental factors. Many diseases with a complex aetiology therefore remain misunderstood. By developing a holistic approach to tackle the complexity of interactions, we decipher the complex intra-host interactions underlying Pacific oyster mortality syndrome affecting juveniles of Crassostrea gigas, the main oyster species exploited worldwide. Using experimental infections reproducing the natural route of infection and combining thorough molecular analyses of oyster families with contrasted susceptibilities, we demonstrate that the disease is caused by multiple infection with an initial and necessary step of infection of oyster haemocytes by the Ostreid herpesvirus OsHV-1 µVar. Viral replication leads to the host entering an immune-compromised state, evolving towards subsequent bacteraemia by opportunistic bacteria. We propose the application of our integrative approach to decipher other multifactorial diseases that affect non-model species worldwide.


Asunto(s)
Bacteriemia/inmunología , Crassostrea/inmunología , Crassostrea/virología , Herpesviridae/fisiología , Terapia de Inmunosupresión , Virosis/inmunología , Virosis/virología , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Crassostrea/microbiología , Hemocitos/efectos de los fármacos , Hemocitos/patología , Hemocitos/virología , Proteínas Inhibidoras de la Apoptosis/metabolismo , Fenotipo , Replicación Viral/efectos de los fármacos
6.
Environ Microbiol ; 18(3): 875-88, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26472275

RESUMEN

Recent studies revealed that several vibrio species have evolved the capacity to survive inside host cells. However, it is still often ignored if intracellular stages are required for pathogenicity. Virulence of Vibrio tasmaniensis LGP32, a strain pathogenic for Crassostrea gigas oysters, depends on entry into hemocytes, the oyster immune cells. We investigated here the mechanisms of LGP32 intracellular survival and their consequences on the host-pathogen interaction. Entry and survival inside hemocytes were required for LGP32-driven cytolysis of hemocytes, both in vivo and in vitro. LGP32 intracellular stages showed a profound boost in metabolic activity and a major transcription of antioxidant and copper detoxification genes, as revealed by RNA sequencing. LGP32 isogenic mutants showed that resistance to oxidative stress and copper efflux are two main functions required for vibrio intracellular stages and cytotoxicity to hemocytes. Copper efflux was also essential for host colonization and virulence in vivo. Altogether, our results identify copper resistance as a major mechanism to resist killing by phagocytes, induce cytolysis of immune cells and colonize oysters. Selection of such resistance traits could arise from vibrio interactions with copper-rich environmental niches including marine invertebrates, which favour the emergence of pathogenic vibrios resistant to intraphagosomal killing across animal species.


Asunto(s)
Cobre/metabolismo , Crassostrea/microbiología , Hemocitos/microbiología , Mariscos/microbiología , Vibrio/metabolismo , Animales , Proteínas Bacterianas/genética , Secuencia de Bases , Citoplasma , Hemocitos/inmunología , Homeostasis , Interacciones Huésped-Patógeno , Análisis de Secuencia de ARN , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Vibrio/genética , Vibrio/patogenicidad , Virulencia
7.
J Biol Chem ; 289(36): 24821-31, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25037219

RESUMEN

Although antimicrobial histones have been isolated from multiple metazoan species, their role in host defense has long remained unanswered. We found here that the hemocytes of the oyster Crassostrea gigas release antimicrobial H1-like and H5-like histones in response to tissue damage and infection. These antimicrobial histones were shown to be associated with extracellular DNA networks released by hemocytes, the circulating immune cells of invertebrates, in response to immune challenge. The hemocyte-released DNA was found to surround and entangle vibrios. This defense mechanism is reminiscent of the neutrophil extracellular traps (ETs) recently described in vertebrates. Importantly, oyster ETs were evidenced in vivo in hemocyte-infiltrated interstitial tissues surrounding wounds, whereas they were absent from tissues of unchallenged oysters. Consistently, antimicrobial histones were found to accumulate in oyster tissues following injury or infection with vibrios. Finally, oyster ET formation was highly dependent on the production of reactive oxygen species by hemocytes. This shows that ET formation relies on common cellular and molecular mechanisms from vertebrates to invertebrates. Altogether, our data reveal that ET formation is a defense mechanism triggered by infection and tissue damage, which is shared by relatively distant species suggesting either evolutionary conservation or convergent evolution within Bilateria.


Asunto(s)
Inmunidad Adaptativa/inmunología , Crassostrea/inmunología , Trampas Extracelulares/inmunología , Histonas/inmunología , Invertebrados/inmunología , Secuencia de Aminoácidos , Animales , Antiinfecciosos/inmunología , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Crassostrea/metabolismo , Crassostrea/microbiología , Trampas Extracelulares/metabolismo , Hemocitos/inmunología , Hemocitos/metabolismo , Histonas/genética , Histonas/metabolismo , Interacciones Huésped-Patógeno/inmunología , Invertebrados/metabolismo , Invertebrados/microbiología , Pruebas de Sensibilidad Microbiana , Microscopía Confocal , Microscopía Fluorescente , Datos de Secuencia Molecular , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Vibrio/inmunología , Vibrio/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...