Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 950: 175353, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39116482

RESUMEN

Traditional ditches ("acequias" in Spanish) derive meltwater and infiltrate groundwater providing ecological services downstream in the semi-arid Sierra Nevada range (SE Spain). Therefore, they may act as a nature-based solution by alleviating drought stress in trees growing near ditches by enhancing growth and reducing their intrinsic water-use efficiency (iWUE). Such a mitigation role of acequias is critical given that some oak (Quercus pyrenaica) and pine (Pinus sylvestris) stands reach their xeric distribution limits in Europe. We compared tree-ring width data and wood δ13C, a proxy of iWUE, in oak and pine stands located near or far (control) from ditches with different infiltration capacity in two watersheds. We assessed how trees responded to climate data, drought stress, and vegetation greenness through correlations and resilience indices. Oak trees located near ditches grew more and responded less to precipitation, soil moisture, a drought index, and greenness than control trees. In pines, we did not find this pattern, and ditch trees grew more than control trees only during an extremely dry year (1995). Climate-growth correlations suggested a longer growing season in ditch pines. Growth of ditch oaks from the "Acequia Nueva" (AN), with high infiltration capacity, responded more to autumn soil moisture and showed the lowest δ13C. Growth was enhanced by cool-wet spring conditions in pines and also by warm-wet conditions in the prior winter in the case of oaks. Control trees showed lower resistance to drought. Control trees presented higher wood δ13C values except for old oaks from the "Acequia Grande" (AG) site which may show long-term acclimation. Traditional ditches alleviate drought stress in oak and pine stands subjected to regional xeric climate conditions.

2.
Sci Total Environ ; 935: 173465, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38788934

RESUMEN

Climate change influences forest ecosystems in several ways, such as modifying forest growth or ecosystem functionality. To fully understand the impact of changing climatic conditions on forest growth it is necessary to undertake long-term spatiotemporal analyses. The main purpose of this work is to describe the major trends in tree growth of Pinus pinaster in Spain over the last 70 years, differentiating homogeneous ecological units using an unsupervised classification algorithm and additive modelling techniques. We also aim to relate these growth trends with temporal series for precipitation and temperature, as well as forest variables. We leverage information from a large data set of tree cores (around 2200) extracted during the field campaign of the Fourth Spanish National Forest Inventory. An unsupervised algorithm classified the plots into five classes, which were consistent in ecological terms. We also found a general decline in growth in three of the five ecoregions since the 1970s, concomitant with an increase in temperature and a reduction in precipitation. However, this tree growth decline has not been observed in the Atlantic influenced ecoregion, where the cooler, more humid climatic conditions are more stable. Certain stand features, such as low basal area through forest management practices, may have alleviated the impact of harsh climatic conditions on some areas of inner Spain, while denser stands display a more pronounced decline in tree growth. We concluded that Southern populations show some degrees of growth decline and low growth trends while Northern populations did not exhibit growth decline and have the largest growth rates. Under a forecasted increment of temperatures, the growth decline can be expanded.


Asunto(s)
Cambio Climático , Bosques , Pinus , Pinus/crecimiento & desarrollo , España , Árboles/crecimiento & desarrollo , Análisis Espacio-Temporal , Ecosistema , Monitoreo del Ambiente/métodos
3.
Sci Total Environ ; 937: 173321, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38782287

RESUMEN

The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.


Asunto(s)
Cambio Climático , Sequías , Fagus , Fagus/crecimiento & desarrollo , Fagus/fisiología , Bosques , Árboles/crecimiento & desarrollo , Árboles/fisiología
4.
Sci Total Environ ; 918: 170539, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38296069

RESUMEN

We lack understanding of how variable is radial growth of coexisting tree and shrub species, and how growth is constrained by drought depending on site aridity. Here, we compared the radial growth of two widespread and coexisting species, a winter deciduous shrub (Amelanchier ovalis Medik.) and an evergreen conifer tree (Pinus sylvestris L.). We sampled four sites in Northeastern Spain subjected to different aridity levels and used dendrochronological methods to quantify growth patterns and responses to climate variables. The growth of the two species varied between regions, being lower in the driest sites. The first-order autocorrelation (growth persistence) was higher in more mesic sites but without clear differences between species. Tree and shrub growth negatively responded to elevated summer temperatures and positively to spring-summer precipitation and wet conditions. However, negative growth responses of the shrub to drought were only observed in the two driest sites in contrast to widespread responses of the tree. Abrupt growth reductions were common in the drier sites, but resilience indices show that the two species rapidly recovered pre-drought growth levels. The lower growth synchrony of the shrub as compared to the tree can be due to the multistemmed architecture, fast growth and low stature of the shrub. Besides, the high dependency of the shrub growth on summer rainfall can explain why drought limitations were only apparent in the two driest sites. In any case, results point out to the dendrochronological potential of shrubs, which is particularly relevant giving its ability to inhabit woodlands and treeless regions under harsh climatic conditions. Nevertheless, further research is required to elucidate the capacity of shrub species to tolerate drought, as well as to understand how shrubs thrive in water- and cold-limited environments.


Asunto(s)
Pinus sylvestris , Pinus , Árboles , Sequías , Bosques , Estaciones del Año , Cambio Climático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...