Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cells ; 13(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38391939

RESUMEN

Ribosome biogenesis is essential for the functioning of living cells. In higher eukaryotes, this multistep process is tightly controlled and involves a variety of specialized proteins and RNAs. This pool of so-called ribosome biogenesis factors includes diverse proteins with enzymatic and structural functions. Some of them have homologs in yeast S. cerevisiae, and their function can be inferred from the structural and biochemical data obtained for the yeast counterparts. The functions of human proteins RPF1 and ESF1 remain largely unclear, although RPF1 has been recently shown to participate in 60S biogenesis. Both proteins have drawn our attention since they contribute to the early stages of ribosome biogenesis, which are far less studied than the later stages. In this study, we employed the loss-of-function shRNA/siRNA-based approach to the human cell line HEK293 to determine the role of RPF1 and ESF1 in ribosome biogenesis. Downregulating RPF1 and ESF1 significantly changed the pattern of RNA products derived from 47S pre-rRNA. Our findings demonstrate that RPF1 and ESF1 are associated with different pre-ribosomal particles, pre-60S, and pre-40S particles, respectively. Our results allow for speculation about the particular steps of pre-rRNA processing, which highly rely on the RPF1 and ESF1 functions. We suggest that both factors are not directly involved in pre-rRNA cleavage but rather help pre-rRNA to acquire the conformation favoring its cleavage.


Asunto(s)
Precursores del ARN , Proteínas de Unión al ARN , Humanos , Células HEK293 , Ribosomas/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
PLoS One ; 18(7): e0285833, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37450438

RESUMEN

The biogenesis of ribosomes requires tightly controlled transcription and processing of pre-rRNA which comprises ribosomal RNAs forming the core of large and small ribosomal subunits. Early steps of the pre-rRNA processing and assembly of the ribosomal subunits require a large set of proteins that perform folding and nucleolytic cleavage of pre-rRNAs in the nucleoli. Structure and functions of proteins involved in the pre-rRNA processing have been extensively studied in the budding yeast S. cerevisiae. Functional characterization of their human homologues is complicated by the complexity of mammalian ribosomes and increased number of protein factors involved in the ribosomal biogenesis. Homologues of human nucleolar protein SURF6 from yeast and mouse, Rrp14 and Surf6, respectively, had been shown to be involved in the early steps of pre-rRNA processing. Rrp14 works as RNA chaperone in complex with proteins Ssf1 and Rrp15. Human SURF6 knockdown and overexpression were used to clarify a role of SURF6 in the early steps of pre-rRNA processing in human cell lines HeLa and HTC116. By analyzing the abundance of the rRNA precursors in cells with decreased level or overexpression of SURF6, we demonstrated that human SURF6 is involved in the maturation of rRNAs from both small and large ribosomal subunits. Changes in the SURF6 level caused by knockdown or overexpression of the protein do not result in the death of HeLa cells in contrast to murine embryonic fibroblasts, but significantly alter the distribution of cells among the phases of the cell cycle. SURF6 knockdown in both p53 sufficient and p53 deficient HCT116 human cancer cells results in elongation of G0/G1 and shortening of G2/M phase. This surprising result suggests p53 independence of SURF6 effects on the cell cycle and possible multiple functions of SURF6. Our data point to the shift from pathway 1 to pathway 2 of the rRNA biogenesis caused by the SURF6 knockdown and its likely association with p53 pathway.


Asunto(s)
Proteínas Nucleares , Precursores del ARN , Humanos , Células HeLa , Mamíferos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Ribosómicas/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , Saccharomyces cerevisiae/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
3.
Front Cell Dev Biol ; 11: 1060000, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960410

RESUMEN

Glioblastoma is the most aggressive variant of glioma, the tumor of glial origin which accounts for 80% of brain tumors. Glioblastoma is characterized by astoundingly poor prognosis for patients; a combination of surgery, chemo- and radiotherapy used for clinical treatment of glioblastoma almost inevitably results in rapid relapse and development of more aggressive and therapy resistant tumor. Recently, it was demonstrated that extracellular vesicles produced by glioblastoma (GBM-EVs) during apoptotic cell death can bind to surrounding cells and change their phenotype to more aggressive. GBM-EVs participate also in establishment of immune suppressive microenvironment that protects glioblastoma from antigen-specific recognition and killing by T cells. In this review, we collected present data concerning characterization of GBM-EVs and study of their effects on different populations of the immune cells (T cells, macrophages, dendritic cells, myeloid-derived suppressor cells). We aimed at critical analysis of experimental evidence in order to conclude whether glioblastoma-derived extracellular vesicles are a major factor in immune evasion of this deadly tumor. We summarized data concerning potential use of GBM-EVs for non-invasive diagnostics of glioblastoma. Finally, the applicability of approaches aimed at blocking of GBM-EVs production or their fusion with target cells for treatment of glioblastoma was analyzed.

4.
Front Bioeng Biotechnol ; 11: 1341685, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38304104

RESUMEN

The identification of low-frequency antigen-specific CD4+ T cells is crucial for effective immunomonitoring across various diseases. However, this task still encounters experimental challenges necessitating the implementation of enrichment procedures. While existing antigen-specific expansion technologies predominantly concentrate on the enrichment of CD8+ T cells, advancements in methods targeting CD4+ T cells have been limited. In this study, we report a technique that harnesses antigen-presenting extracellular vesicles (EVs) for stimulation and expansion of antigen-specific CD4+ T cells. EVs are derived from a genetically modified HeLa cell line designed to emulate professional antigen-presenting cells (APCs) by expressing key costimulatory molecules CD80 and specific peptide-MHC-II complexes (pMHCs). Our results demonstrate the beneficial potent stimulatory capacity of EVs in activating both immortalized and isolated human CD4+ T cells from peripheral blood mononuclear cells (PBMCs). Our technique successfully expands low-frequency influenza-specific CD4+ T cells from healthy individuals. In summary, the elaborated methodology represents a streamlined and efficient approach for the detection and expansion of antigen-specific CD4+ T cells, presenting a valuable alternative to existing antigen-specific T-cell expansion protocols.

5.
Front Immunol ; 13: 803229, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36052064

RESUMEN

Background: B lymphocytes play a pivotal regulatory role in the development of the immune response. It was previously shown that deficiency in B regulatory cells (Bregs) or a decrease in their anti-inflammatory activity can lead to immunological dysfunctions. However, the exact mechanisms of Bregs development and functioning are only partially resolved. For instance, only a little is known about the structure of their B cell receptor (BCR) repertoires in autoimmune disorders, including multiple sclerosis (MS), a severe neuroinflammatory disease with a yet unknown etiology. Here, we elucidate specific properties of B regulatory cells in MS. Methods: We performed a prospective study of the transitional Breg (tBreg) subpopulations with the CD19+CD24highCD38high phenotype from MS patients and healthy donors by (i) measuring their content during two diverging courses of relapsing-remitting MS: benign multiple sclerosis (BMS) and highly active multiple sclerosis (HAMS); (ii) analyzing BCR repertoires of circulating B cells by high-throughput sequencing; and (iii) measuring the percentage of CD27+ cells in tBregs. Results: The tBregs from HAMS patients carry the heavy chain with a lower amount of hypermutations than tBregs from healthy donors. The percentage of transitional CD24highCD38high B cells is elevated, whereas the frequency of differentiated CD27+ cells in this transitional B cell subset was decreased in the MS patients as compared with healthy donors. Conclusions: Impaired maturation of regulatory B cells is associated with MS progression.


Asunto(s)
Linfocitos B Reguladores , Esclerosis Múltiple , Humanos , Interleucina-10 , Estudios Prospectivos , Receptores de Antígenos de Linfocitos B
6.
Biochimie ; 200: 131-139, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35654242

RESUMEN

Glioblastoma (GBM) is the most frequent and aggressive primary brain cancer in adult patients. A variety of long non-coding RNAs play an important role in the pathogenesis of GBM, however the molecular functions of most of them still remain elusive. Here, we investigated linc-RoR (long intergenic non-protein coding RNA, regulator of reprogramming) using GBM neurospheres obtained from 12 different patients. We demonstrated that the highest level of this transcript is detected in cells with increased EGFR expression. According to our data, linc-RoR knockdown decreases cell proliferation, increases sensitivity to DNA damage, and downregulates the level of cancer stem cell (CSC) markers. On the other hand, linc-RoR overexpression promote cell growth and increases the proportion of CSCs. Analysis of RNA sequencing data revealed that linc-RoR affects expression of genes involved in the regulation of mitosis. In agreement with this observation, we have showen that the highest level of linc-RoR is detected in the G2/M phase of the cell cycle, when linc-RoR is localized on the chromosomes of dividing cells. Based on our results, we can propose that linc-RoR performs pro-oncogenic functions in human gliobalstoma cells, which may be associated with the regulation of mitotic progression and GBM stemness.


Asunto(s)
Glioblastoma , ARN Largo no Codificante , Carcinogénesis , Línea Celular Tumoral , Proliferación Celular/genética , Glioblastoma/genética , Humanos , Células Madre Neoplásicas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
8.
Biochimie ; 185: 68-77, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33677034

RESUMEN

Obesity is a key health problem and is associated with a high risk of type 2 diabetes and other metabolic diseases. Increased weight as well as dysregulation of adipocyte homeostasis are the main drivers of obesity. Pathological adipogenesis plays a central role in obesity-related complications such as type 2 diabetes, hypertension and others. Thus, an understanding of the molecular mechanisms involved in physiological and pathogenic adipogenesis can help to develop new strategies to prevent or cure obesity and related diseases. Previously, genetic polymorphisms in the HHEX gene that encodes the homeobox transcription factor HEX (PRH) were found to be associated with type 2 diabetes and high body mass index at birth by GWAS in distinct human populations. To understand whether HHEX has a regulatory function in adipogenesis, we performed RNAi-mediated knockdown of Hhex in preadipocyte cell line 3T3-L1 in vitro, and studied changes in the efficacy of adipogenesis. We found that Hhex knockdown blocks adipogenesis in preadipocytes in a dose-dependent manner and leads to a significant decrease of PPAR-gamma protein - the main regulator of adipogenesis. We also propose that Hhex can play an important role in adipocyte differentiation by affecting the level of the PPAR-gamma protein. Our study supports the claim that Hhex plays an important role in adipocyte differentiation program and can contribute to fat tissue homeostasis.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis , Regulación de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Factores de Transcripción/biosíntesis , Células 3T3-L1 , Animales , Ratones
9.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35008748

RESUMEN

Obesity and type 2 diabetes are both significant contributors to the contemporary pandemic of non-communicable diseases. Both disorders are interconnected and associated with the disruption of normal homeostasis in adipose tissue. Consequently, exploring adipose tissue differentiation and homeostasis is important for the treatment and prevention of metabolic disorders. The aim of this work is to review the consecutive steps in the postnatal development of adipocytes, with a special emphasis on in vivo studies. We gave particular attention to well-known transcription factors that had been thoroughly described in vitro, and showed that the in vivo research of adipogenic differentiation can lead to surprising findings.


Asunto(s)
Adipocitos/metabolismo , Investigación Biomédica , Factores de Transcripción/metabolismo , Adipogénesis , Animales , Humanos , Modelos Biológicos
10.
Methods Protoc ; 3(2)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349461

RESUMEN

The analysis of glycosylphosphatidylinositol (GPI)-anchored receptor distribution and dynamics in live cells is challenging, because their clusters exhibit subdiffraction-limited sizes and are highly dynamic. However, the cellular response depends on the GPI-anchored receptor clusters' distribution and dynamics. Here, we compare three approaches to GPI-anchored receptor labeling (with antibodies, fluorescent proteins, and enzymatically modified small peptide tags) and use several variants of Förster resonance energy transfer (FRET) detection by confocal microscopy and flow cytometry in order to obtain insight into the distribution and the ligand-induced dynamics of GPI-anchored receptors. We found that the enzyme-mediated site-specific fluorescence labeling of T-cadherin modified with a short peptide tag (12 residues in length) have several advantages over labeling by fluorescent proteins or antibodies, including (i) the minimized distortion of the protein's properties, (ii) the possibility to use a cell-impermeable fluorescent substrate that allows for selective labeling of surface-exposed proteins in live cells, and (iii) superior control of the donor to acceptor molar ratio. We successfully detected the FRET of GPI-anchored receptors, T-cadherin, and ephrin-A1, without ligands, and showed in real time that adiponectin induces stable T-cadherin cluster formation. In this paper (which is complementary to our recent research (Balatskaya et al., 2019)), we present the practical aspects of labeling and the heteroFRET measurements of GPI-anchored receptors to study their dynamics on a plasma membrane in live cells.

11.
Biochimie ; 174: 9-17, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32275944

RESUMEN

Rheumatoid arthritis (RA) is frequent systemic autoimmune disease characterized by excessive activation of collagen-specific T helper cells, and elevated level of autoantibodies in the serum. Development of RA is associated with defect in compartment of regulatory CD4+Foxp3+ T cells (Treg), but data concerning suppressive potential of Treg population in RA patients are contradictory and depend on the stage of disease. In this study we aimed to characterize abundance and phenotypic markers of CD4+Foxp3+ Treg in peripheral blood of healthy donors compared to untreated early RA patients to find potential correlations with the disease activity, antibody level, and absolute numbers and proportion of different subpopulations of T cells. Moreover, we assessed the influence of methotrexate (MT) treatment on percentage and absolute numbers of CD4+Foxp3+ Treg from the peripheral blood of untreated early RA patients. We demonstrate that increase and phenotypic changes in Treg population correlate well with response to MT. Analysis of the cohorts of matched RA patients (n = 45) and healthy controls (n = 20) revealed that patients with untreated early RA demonstrate substantial decrease in blood Treg percentage and absolute number, as well as low level of activated Treg surface markers in comparison to healthy control. The defect in Treg compartment negatively correlates with both RA activity and antibody level. MT treatment of patients with early untreated RA increases both proportion and absolute number of Treg with high level of activation markers, suggesting an increase of their functional capacity. Here we speculate the role of Tregs as specific cellular marker of successful RA treatment.


Asunto(s)
Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Metotrexato/uso terapéutico , Linfocitos T Reguladores/efectos de los fármacos , Adulto , Biomarcadores/sangre , Estudios de Casos y Controles , Femenino , Factores de Transcripción Forkhead/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Linfocitos T Reguladores/patología
12.
Mol Cell Proteomics ; 19(6): 960-970, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32265293

RESUMEN

Glioblastoma (GBM) is one of the most aggressive human cancers with a median survival of less than two years. A distinguishing pathological feature of GBM is a high degree of inter- and intratumoral heterogeneity. Intertumoral heterogeneity of GBM has been extensively investigated on genomic, methylomic, transcriptomic, proteomic and metabolomics levels, however only a few studies describe intratumoral heterogeneity because of the lack of methods allowing to analyze GBM samples with high spatial resolution. Here, we applied TOF-SIMS (Time-of-flight secondary ion mass spectrometry) for the analysis of single cells and clinical samples such as paraffin and frozen tumor sections obtained from 57 patients. We developed a technique that allows us to simultaneously detect the distribution of proteins and metabolites in glioma tissue with 800 nm spatial resolution. Our results demonstrate that according to TOF-SIMS data glioma samples can be subdivided into clinically relevant groups and distinguished from the normal brain tissue. In addition, TOF-SIMS was able to elucidate differences between morphologically distinct regions of GBM within the same tumor. By staining GBM sections with gold-conjugated antibodies against Caveolin-1 we could visualize border between zones of necrotic and cellular tumor and subdivide glioma samples into groups characterized by different survival of the patients. Finally, we demonstrated that GBM contains cells that are characterized by high levels of Caveolin-1 protein and cholesterol. This population may partly represent a glioma stem cells. Collectively, our results show that the technique described here allows to analyze glioma tissues with a spatial resolution beyond reach of most of other omics approaches and the obtained data may be used to predict clinical behavior of the tumor.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Análisis de la Célula Individual/métodos , Espectrometría de Masa de Ion Secundario/métodos , Animales , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Caveolina 1/metabolismo , Colesterol/metabolismo , Femenino , Glioblastoma/mortalidad , Glioblastoma/patología , Humanos , Inmunohistoquímica , Ratones , Ratones Desnudos , Recurrencia Local de Neoplasia , Pronóstico , Análisis Espacial , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Biochim Biophys Acta Gen Subj ; 1863(11): 129414, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31404618

RESUMEN

BACKGROUND: Unlike other cadherins, T-cadherin does not mediate strong cell-cell adhesion. It has two soluble ligands: low density lipoprotein (LDL) and high-molecular-weight (HMW) adiponectin. LDL binding to T-cadherin induces calcium signaling, migration, and proliferation, and has proatherogenic effects, but adiponectin binding promotes antiatherogenic effects. The reasons for this difference and mechanism of signal transduction by glycosylphosphatidylinositol (GPI)-anchored T-cadherin are unknown. METHODS: We compared the ability of LDL and HMW adiponectin to induce calcium signaling, T-cadherin clustering and internalization. We measured calcium signaling in smooth muscle cells and T-cadherin expressing HEK293 using single-cell imaging. To study receptor clustering, we tested three different T-cadherin labeling strategies and then utilized confocal microscopy and flow cytometry assays based on Förster resonance energy transfer (FRET). RESULTS: Enzymatically labeled T-cadherin retained its cellular localization and physiological activity, features that were otherwise affected by fluorescent proteins and antibodies. This labeling method allowed us to study T-cadherin clustering dynamics at the cell surface. HMW adiponectin induced the formation of stable T-cadherin clusters while LDL induced short-lived clusters. Cellular responses were also different: LDL triggered cholesterol- and actin-dependent calcium signaling without internalization while adiponectin promoted the opposite effect. CONCLUSIONS: We revealed distinct ligand-specific T-cadherin clustering and its ability to induce internalization or intracellular calcium signaling that likely explains the different physiological effects of LDL and HMW adiponectin. GENERAL SIGNIFICANCE: This work highlights the importance of GPI-anchored receptor clustering dynamics in mediating cellular responses. Different ligands can induce different effects in an identical cell via the same receptor.


Asunto(s)
Adiponectina/farmacología , Cadherinas/metabolismo , Señalización del Calcio/efectos de los fármacos , Glicosilfosfatidilinositoles/metabolismo , Lipoproteínas LDL/farmacología , Miocitos del Músculo Liso/metabolismo , Adulto , Femenino , Células HEK293 , Humanos , Masculino , Miocitos del Músculo Liso/citología
14.
Tissue Eng Part C Methods ; 25(3): 168-175, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30747044

RESUMEN

IMPACT STATEMENT: Cell lines represent convenient models to elucidate specific causes of multigenetic and pluricausal diseases, to test breakthrough regenerative technologies. Most commonly used cell lines surpass diploid cells in their accessibility for delivery of large DNA molecules and genome editing, but the main obstacles for obtaining cell models with knockout-targeted protein from aneuploid cells are multiple allele copies and karyotype/phenotype heterogeneity. In the study, we report an original approach to CRISPR-/Cas9-mediated genome modification of aneuploid cell cultures to create functional cell models, achieving highly efficient targeted protein knockout and avoiding "clonal effect" (for the first time to our knowledge).


Asunto(s)
Aneuploidia , Sistemas CRISPR-Cas , Edición Génica , Técnicas de Inactivación de Genes/normas , Genes/genética , Animales , Células HeLa , Células Hep G2 , Humanos , Ratones , Células 3T3 NIH
15.
Nat Immunol ; 20(2): 232-242, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643266

RESUMEN

Regulatory T cells (Treg cells), whose differentiation and function are controlled by transcription factor Foxp3, express the closely related family member Foxp1. Here we explored Foxp1 function in Treg cells. We found that a large number of Foxp3-bound genomic sites in Treg cells were occupied by Foxp1 in both Treg cells and conventional T cells (Tconv cells). In Treg cells, Foxp1 markedly increased Foxp3 binding to these sites. Foxp1 deficiency in Treg cells resulted in their impaired function and competitive fitness, associated with markedly reduced CD25 expression and interleukin-2 (IL-2) responsiveness, diminished CTLA-4 expression and increased SATB1 expression. The characteristic expression patterns of CD25, Foxp3 and CTLA-4 in Treg cells were fully or partially rescued by strong IL-2 signaling. Our studies suggest that Foxp1 serves an essential non-redundant function in Treg cells by enforcing Foxp3-mediated regulation of gene expression and enabling efficient IL-2 signaling in these cells.


Asunto(s)
Cromatina/metabolismo , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica/inmunología , Proteínas Represoras/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Células Cultivadas , Femenino , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/inmunología , Interleucina-2/inmunología , Interleucina-2/metabolismo , Masculino , Ratones , Ratones Transgénicos , Cultivo Primario de Células , Proteínas Represoras/genética , Proteínas Represoras/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología
16.
Oncotarget ; 9(50): 29414-29430, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-30034627

RESUMEN

Neuroblastoma is a tumor arising from pluripotent sympathoadrenal precursor cells of neural cell origin. Neuroblastoma is one of the most aggressive childhood tumors with highly invasive and metastatic potential. The increased expression of urokinase and its receptor is often associated with a negative prognosis in neuroblastoma patients. We have shown that targeting of the Plaur gene in mouse neuroblastoma Neuro 2A cells by CRISPR/Cas9n results in ~60% decrease in cell proliferation (p<0.05), reduction in the number of Ki-67 positive cells, caspase 3 activation and PARP-1 cleavage. Knockout of uPAR leads to downregulation of mRNA encoding full-length TrkC receptor, which is involved in p38MAPK and Akt signalling pathways. This finding provides a rationale to study a role of uPAR in neuroblastoma progression, since uPAR could be considered a potential therapeutic target in neuroblastoma treatment.

17.
Biol Chem ; 399(5): 437-446, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29373314

RESUMEN

Duox2 belongs to the large family of NADPH-oxidase enzymes that are implicated in immune response, vasoregulation, hormone synthesis, cell growth and differentiation via the regulated synthesis of H2O2 and reactive oxygen species. We and others have shown that Duox2 and H2O2 are involved in platelet-derived growth factor (PDGF) induced migration of fibroblasts. Now, using the CRISPR/Cas9-mediated genome editing we demonstrate that the extreme C-terminal region of Duox2 is required for PDGF-stimulated activity of Duox2 and H2O2 production. We generated the fibroblast cells that stably co-express the wild-type or C-terminally modified Duox2 and fluorescent H2O2 probe Hyper. We found that nonsense substitution of the last 23 amino acids in Duox2 results in complete loss of PDGF stimulation of intracellular H2O2 and fibroblast migration, yet these mutations have no effects on the expression of Duox2 and other NADPH-oxidases in cells. These findings illustrate for the first time that the extreme C-terminus of Duox2 is required for the functional activity of the enzyme. Furthermore, the conservative nature of the C-terminus suggests its role for activity in other NADPH-oxidases.


Asunto(s)
Sistemas CRISPR-Cas/genética , Oxidasas Duales/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Oxidasas Duales/genética , Fibroblastos/metabolismo , Ratones , Mutación , Células 3T3 NIH
18.
Stem Cells Int ; 2017: 6516854, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28761447

RESUMEN

Mesenchymal stromal cells (MSC) control excessive inflammation and create a microenvironment for tissue repair protecting from chronic inflammation and tissue fibrosis. We examined the molecular mechanisms of MSC immunomodulatory function in mixed cultures of human adipose-derived MSC with lymphocytes. Our data show that MSC promote unstimulated lymphocyte survival potentially by an increase in antigen presentation. Under inflammatory conditions, mimicked by stimulation of TCR in lymphocytes, MSC suppress activation and proliferation of stimulated T cells. Immunosuppression is accompanied by downregulation of IL-2Rα that negatively affects the survival of activated T cells. MSC upregulate transcription of indolamine-2,3-dioxygenase (IDO) and inducible NO synthase (iNOS), which generate products negatively affecting T cell function. Both MSC and lymphocytes dramatically increase the surface ICAM-1 level in mixed cultures. Antibody-mediated blockage of surface ICAM-1 partially releases MSC-mediated immune suppression in vitro. Our data suggest that MSC have cell-intrinsic molecular programs depending on the inflammatory microenvironment. We speculate that MSC sense soluble factors and respond by surface ICAM-1 upregulation. ICAM-1 is involved in the control of T cell activation leading to immunosuppression or modest stimulation depending on the T cell status. Immunomodulation by MSC ranging from support of naive T cell survival to immunosuppression of activated T cells may affect the tissue microenvironment protecting from aberrant regeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA