Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemistry ; 29(1): e202202599, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36134621

RESUMEN

Infection of host cells by SARS-CoV-2 begins with recognition by the virus S (spike) protein of cell surface heparan sulfate (HS), tethering the virus to the extracellular matrix environment, and causing the subunit S1-RBD to undergo a conformational change into the 'open' conformation. These two events promote the binding of S1-RBD to the angiotensin converting enzyme 2 (ACE2) receptor, a preliminary step toward viral-cell membrane fusion. Combining ligand-based NMR spectroscopy with molecular dynamics, oligosaccharide analogues were used to explore the interactions between S1-RBD of SARS CoV-2 and HS, revealing several low-specificity binding modes and previously unidentified potential sites for the binding of extended HS polysaccharide chains. The evidence for multiple binding modes also suggest that highly specific inhibitors will not be optimal against protein S but, rather, diverse HS-based structures, characterized by high affinity and including multi-valent compounds, may be required.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Unión Proteica , Dominios Proteicos , Simulación de Dinámica Molecular , Polisacáridos , Sitios de Unión , Glicoproteína de la Espiga del Coronavirus/química
2.
Mol Pharm ; 19(9): 3242-3255, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35948076

RESUMEN

Structure-function relationships in proteins refer to a trade-off between stability and bioactivity, molded by evolution of the molecule. Identifying which protein amino acid residues jeopardize global or local stability for the benefit of bioactivity would reveal residues pivotal to this structure-function trade-off. Here, we use 15N-1H heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy to probe the microenvironment and dynamics of residues in granulocyte colony-stimulating factor (G-CSF) through thermal perturbation. From this analysis, we identified four residues (G4, A6, T133, and Q134) that we classed as significant to global stability, given that they all experienced large environmental and dynamic changes and were closely correlated to each other in their NMR characteristics. Additionally, we observe that roughly four structural clusters are subject to localized conformational changes or partial unfolding prior to global unfolding at higher temperature. Combining NMR observables with structure relaxation methods reveals that these structural clusters concentrate around loop AB (binding site III inclusive). This loop has been previously implicated in conformational changes that result in an aggregation prone state of G-CSF. Residues H43, V48, and S63 appear to be pivotal to an opening motion of loop AB, a change that is possibly also important for function. Hence, we present here an approach to profiling residues in order to highlight their potential roles in the two vital characteristics of proteins: stability and bioactivity.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos , Proteínas , Factor Estimulante de Colonias de Granulocitos/química , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica
3.
ACS Omega ; 7(28): 24461-24467, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35874203

RESUMEN

Heparan sulfate (HS), a sulfated linear carbohydrate that decorates the cell surface and extracellular matrix, is ubiquitously distributed throughout the animal kingdom and represents a key regulator of biological processes and a largely untapped reservoir of potential therapeutic targets. The temporal and spatial variations in the HS structure underpin the concept of "heparanome" and a complex network of HS binding proteins. However, despite its widespread biological roles, the determination of direct structure-to-function correlations is impaired by HS chemical heterogeneity. Attempts to correlate substitution patterns (mostly at the level of sulfation) with a given biological activity have been made. Nonetheless, these do not generally consider higher-level conformational effects at the carbohydrate level. Here, the use of NMR chemical shift analysis, NOEs, and spin-spin coupling constants sheds new light on how different sulfation patterns affect the polysaccharide backbone geometry. Furthermore, the substitution of native O-glycosidic linkages to hydrolytically more stable S-glycosidic forms leads to observable conformational changes in model saccharides, suggesting that alternative chemical spaces can be accessed and explored using such mimetics. Employing a series of systematically modified heparin oligosaccharides (as a proxy for HS) and chemically synthesized O- and S-glycoside analogues, the chemical space occupied by such compounds is explored and described.

4.
J Pharm Biomed Anal ; 214: 114724, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35303646

RESUMEN

Heparin has been used successfully as a clinical antithrombotic for almost one century. Its isolation from animal sources (mostly porcine intestinal mucosa) involves multistep purification processes starting from the slaughterhouse (as mucosa) to the pharmaceutical plant (as the API). This complex supply chain increases the risk of contamination and adulteration, mainly with non-porcine ruminant material. The structural similarity of heparins from different origins, the natural variability of the heparin within samples from each source as well as the structural changes induced by manufacturing processes, require increasingly sophisticated methods capable of detecting low levels of contamination. The application of suitable multivariate classification approaches on API 1H NMRspectra serve as rapid and reliable tools for product authentication and the detection of contaminants. Soft Independent Modeling of Class Analogies (SIMCA), Discriminant Analysis (DA), Partial Least Square Discriminant Analysis (PLS-DA) and local classification methods (kNN, BNN and N3) were tested on about one hundred certified heparin samples produced by 14 different manufacturers revealing that Partial Least Squares Discriminant Analysis (PLS-DA) provided the best discrimination of contaminated batches, with a balanced accuracy of 97%.


Asunto(s)
Heparina , Rumiantes , Animales , Análisis Discriminante , Heparina/análisis , Análisis de los Mínimos Cuadrados , Espectroscopía de Resonancia Magnética/métodos , Preparaciones Farmacéuticas , Porcinos
5.
Pathogens ; 10(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34451392

RESUMEN

Towards achieving the goal of eliminating epidemic outbreaks of meningococcal disease in the African meningitis belt, a pentavalent glycoconjugate vaccine (NmCV-5) has been developed to protect against Neisseria meningitidis serogroups A, C, Y, W and X. MenA and X polysaccharides are conjugated to tetanus toxoid (TT) while MenC, Y and W polysaccharides are conjugated to recombinant cross reactive material 197 (rCRM197), a non-toxic genetic variant of diphtheria toxin. This study describes quality control testing performed by the manufacturer, Serum Institute of India Private Limited (SIIPL), and the independent control laboratory of the U.K. (NIBSC) on seven clinical lots of the vaccine to ensure its potency, purity, safety and consistency of its manufacturing. In addition to monitoring upstream-manufactured components, samples of drug substance, final drug product and stability samples were evaluated. This paper focuses on the comparison of the vaccine's critical quality attributes and reviews key indicators of its stability and immunogenicity. Comparable results were obtained by the two laboratories demonstrating sufficient levels of polysaccharide O-acetylation, consistency in size of the bulk conjugate molecules, integrity of the conjugated saccharides in the drug substance and drug product, and acceptable endotoxin content in the final drug product. The freeze-dried vaccine in 5-dose vials was stable based on molecular sizing and free saccharide assays. Lot-to-lot manufacturing consistency was also demonstrated in preclinical studies for polysaccharide-specific IgG and complement-dependent serum bactericidal activity for each serogroup. This study demonstrates the high quality and stability of NmCV-5, which is now undergoing Phase 3 clinical trials in Africa and India.

6.
Comput Struct Biotechnol J ; 19: 2806-2818, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968333

RESUMEN

SARS-CoV-2 has rapidly spread throughout the world's population since its initial discovery in 2019. The virus infects cells via a glycosylated spike protein located on its surface. The protein primarily binds to the angiotensin-converting enzyme-2 (ACE2) receptor, using glycosaminoglycans (GAGs) as co-receptors. Here, we performed bioinformatics and molecular dynamics simulations of the spike protein to investigate the existence of additional GAG binding sites on the receptor-binding domain (RBD), separate from previously reported heparin-binding sites. A putative GAG binding site in the N-terminal domain (NTD) of the protein was identified, encompassing residues 245-246. We hypothesized that GAGs of a sufficient length might bridge the gap between this site and the PRRARS furin cleavage site, including the mutation S247R. Docking studies using GlycoTorch Vina and subsequent MD simulations of the spike trimer in the presence of dodecasaccharides of the GAGs heparin and heparan sulfate supported this possibility. The heparan sulfate chain bridged the gap, binding the furin cleavage site and S247R. In contrast, the heparin chain bound the furin cleavage site and surrounding glycosylation structures, but not S247R. These findings identify a site in the spike protein that favors heparan sulfate binding that may be particularly pertinent for a better understanding of the recent UK and South African strains. This will also assist in future targeted therapy programs that could include repurposing clinical heparan sulfate mimetics.

7.
Biochem J ; 478(2): 423-441, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33410905

RESUMEN

The neuraminidases (NAs) of avian influenza viruses (IAVs) contain a second sialic acid-binding site (2SBS), historically known as the hemadsorption site, which is separated from the sialyl-hydrolase catalytic site and serves to facilitate NA catalytic activity towards multivalent sialyl-capped glycoconjugates. Transmission and adaptation of avian IAVs to humans decreases hemadsorption and catalytic activities of the NA. Here, we report the molecular recognition features of the NA 2SBS of two pandemic H1N1 IAVs, A/Brevig Mission /1/1918 (BM18) and A/California/04/2009 (CA09), differing by their 2SBS activity. Using explicit solvent MD simulation, molecular mechanics, and glycosidic conformation analysis we initially analyzed the interactions of BM18 2SBS with two sialyllacto-N-tetraose pentasaccharides, 3'SLN-LC and 6'SLN-LC, which are models for the glycan receptors of IAVs in birds and humans, respectively. These studies characterize the binding specificity of BM18 2SBS towards human-type and avian-type receptors and identifies the key amino acids that affects binding. We next compared the interactions of the 2SBSs of BM18 and CA09 with 6'SLN-LC, revealing the critical effect of amino acid 372 on binding. Our results expand the current knowledge of the molecular features of NA 2SBSs and its alteration during the adaptation of avian IAVs to humans.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/enzimología , Neuraminidasa/química , Neuraminidasa/metabolismo , Polisacáridos/metabolismo , Sitios de Unión , Simulación de Dinámica Molecular , Polisacáridos/química , Conformación Proteica , Ácidos Siálicos/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo
8.
Thromb Haemost ; 120(12): 1700-1715, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33368089

RESUMEN

The dependence of development and homeostasis in animals on the interaction of hundreds of extracellular regulatory proteins with the peri- and extracellular glycosaminoglycan heparan sulfate (HS) is exploited by many microbial pathogens as a means of adherence and invasion. Heparin, a widely used anticoagulant drug, is structurally similar to HS and is a common experimental proxy. Exogenous heparin prevents infection by a range of viruses, including S-associated coronavirus isolate HSR1. Here, we show that heparin inhibits severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) invasion of Vero cells by up to 80% at doses achievable through prophylaxis and, particularly relevant, within the range deliverable by nebulisation. Surface plasmon resonance and circular dichroism spectroscopy demonstrate that heparin and enoxaparin, a low-molecular-weight heparin which is a clinical anticoagulant, bind and induce a conformational change in the spike (S1) protein receptor-binding domain (S1 RBD) of SARS-CoV-2. A library of heparin derivatives and size-defined fragments were used to probe the structural basis of this interaction. Binding to the RBD is more strongly dependent on the presence of 2-O or 6-O sulfate groups than on N-sulfation and a hexasaccharide is the minimum size required for secondary structural changes to be induced in the RBD. It is likely that inhibition of viral infection arises from an overlap between the binding sites of heparin/HS on S1 RBD and that of the angiotensin-converting enzyme 2. The results suggest a route for the rapid development of a first-line therapeutic by repurposing heparin and its derivatives as antiviral agents against SARS-CoV-2 and other members of the Coronaviridae.


Asunto(s)
Anticoagulantes/farmacología , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Enoxaparina/farmacología , Heparina/farmacología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Anticoagulantes/uso terapéutico , Antivirales/uso terapéutico , Chlorocebus aethiops , Enoxaparina/uso terapéutico , Heparina/uso terapéutico , Humanos , Simulación de Dinámica Molecular , Nebulizadores y Vaporizadores , Unión Proteica , Conformación Proteica , Dominios Proteicos/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Relación Estructura-Actividad , Células Vero , Internalización del Virus
10.
RSC Adv ; 10(47): 28300-28313, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35519099

RESUMEN

Oxytocin (OXT) is a small cyclic peptide that is administered to pregnant women to induce birth in cases where labour is prolonged. It has previously been observed that patients taking a low molecular weight heparin, dalteparin (DAL), and then prescribed, OXT experienced a swifter labour compared to women given OXT alone. Herein are described the interactions between OXT and a number of heparin-based oligosaccharides; DAL; fondaparinux (FP), which is a synthetic heparin oligosaccharide that represents the predominant antithrombin binding-site, and a family of chemically-derived heparin hexasaccharides. The latter oligosaccharides were chosen as they represent sequences found within the polysaccharide dalteparin. Furthermore, the carbohydrate chemical space was investigated by comparing the interaction between OXT and four chemically derivatived heparin hexasaccharides; I2S-A6S NS (DP6), I2OH-A6S NS (DP6-2OH, de-2-O-sulfated hexasaccharide), I2S-A6OH NS (DP6-6OH, de-6-O-sulfated hexasaccharide) and I2S-A6S NAc (DP6-NAc, de-N-sulfated hexasaccharide). The interactions between the peptide and oligosaccharides were studied using a series of 13C-1H and 15N-1H HSQC NMR experiments, at a range of temperatures. This approach allowed the binding epitopes of the peptide and oligosaccharides to be identified, highlighting that 6-O- and N-sulfation substituent groups of heparin are important for the interaction between the peptide and carbohydrate. This is an important observation as de-N-sulfation is a traditional method for decreasing the anticoagulation properties of heparin. Furthermore, low temperature experiments of the OXT : FP complex indicate that hydrogen-bonding is very important for the interaction between the peptide and oligosaccharide.

12.
Vaccine ; 37(29): 3866-3875, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31160100

RESUMEN

In this work, we explore the effects of O-acetylation on the physical and immunological characteristics of the WHO International Standards of Vi polysaccharide (Vi) from both Citrobacter freundii and Salmonella enterica serovar Typhi. We find that, although structurally identical according to NMR, the two Vi standards have differences with respect to susceptibility to de-O-acetylation and viscosity in water. Vi standards from both species have equivalent mass and O-acetylation-dependent binding to a mouse monoclonal antibody and to anti-Vi polyclonal antisera, including the WHO International Standard for human anti-typhoid capsular Vi PS IgG. This study also confirms that human anti-Vi sera binds to completely de-O-acetylated Vi. Molecular dynamics simulations provide conformational rationales for the known effect of de-O-acetylation both on the viscosity and antigenicity of the Vi, demonstrating that de-O-acetylation has a very marked effect on the conformation and dynamic behavior of the Vi, changing the capsular polysaccharide from a rigid helix into a more flexible coil, as well as enhancing the strong interaction of the polysaccharide with sodium ions. Partial de-O-acetylation of Vi revealed hidden epitopes that were recognized by human and sheep anti-Vi PS immune sera. These findings have significance for the manufacture and evaluation of Vi vaccines.


Asunto(s)
Epítopos Inmunodominantes/inmunología , Polisacáridos Bacterianos/inmunología , Vacunas Tifoides-Paratifoides/inmunología , Acetilación , Anticuerpos Antibacterianos/sangre , Citrobacter freundii/inmunología , Humanos , Sueros Inmunes , Simulación de Dinámica Molecular , Polisacáridos Bacterianos/química , Salmonella typhi/inmunología , Fiebre Tifoidea/prevención & control , Organización Mundial de la Salud
13.
iScience ; 16: 206-217, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31185456

RESUMEN

During mammalian development, liver differentiation is driven by signals that converge on multiple transcription factor networks. The hepatocyte nuclear factor signaling network is known to be essential for hepatocyte specification and maintenance. In this study, we have generated deletion and point mutants of hepatocyte nuclear factor-4alpha (HNF4α) to precisely evaluate the function of protein domains during hepatocyte specification from human pluripotent stem cells. We demonstrate that nuclear HNF4α is essential for hepatic progenitor specification, and the introduction of point mutations in HNF4α's Small Ubiquitin-like Modifier (SUMO) consensus motif leads to disrupted hepatocyte differentiation. Taking a multiomics approach, we identified key deficiencies in cell biology, which included dysfunctional metabolism, substrate adhesion, tricarboxylic acid cycle flux, microRNA transport, and mRNA processing. In summary, the combination of genome editing and multiomics analyses has provided valuable insight into the diverse functions of HNF4α during pluripotent stem cell entry into the hepatic lineage and during hepatocellular differentiation.

14.
Faraday Discuss ; 218(0): 303-316, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31123736

RESUMEN

A biological medicine (or biologicals) is a term for a medicinal compound that is derived from a living organism. By their very nature, they are complex and often heterogeneous in structure, composition and biological activity. Some of the oldest pharmaceutical products are biologicals, for example insulin and heparin. The former is now produced recombinantly, with technology being at a point where this can be considered a defined chemical entity. This is not the case for the latter, however. Heparin is a heterogeneous polysaccharide that is extracted from the intestinal mucosa of animals, primarily porcine, although there is also a significant market for non-porcine heparin due to social and economical reasons. In 2008 heparin was adulterated with another sulfated polysaccharide. Unfortunately this event was disastrous and resulted in a global public health emergency. This was the impetuous to apply modern analytical techniques, principally NMR spectroscopy, and multivariate analyses to monitor heparin. Initially, traditional unsupervised multivariate analysis (principal component analysis (PCA)) was applied to the problem. This was able to distinguish animal heparins from each other, and could also separate adulterated heparin from what was considered bona fide heparin. Taught multivariate analysis functions by training the analysis to look for specific patterns within the dataset of interest. If this approach was to be applied to heparin, or any other biological medicine, it would have to be taught to find every possible alien signal. The opposite approach would be more efficient; defining the complex heterogeneous material by a library of bona fide spectra and then filtering test samples with these spectra to reveal alien features that are not consistent with the reference library. This is the basis of an approach termed spectral filtering, which has been applied to 1D and 2D-NMR spectra, and has been very successful in extracting the spectral features of adulterants in heparin, as well as being able to differentiate supposedly biosimilar products. In essence, the filtered spectrum is determined by subtracting the covariance matrix of the library spectra from the covariance matrix of the library spectra plus the test spectrum. These approaches are universal and could be applied to biological medicines such as vaccine polysaccharides and monoclonal antibodies.


Asunto(s)
Productos Biológicos/análisis , Heparina/análisis , Animales , Bovinos , Análisis Multivariante , Resonancia Magnética Nuclear Biomolecular , Porcinos
15.
Biochem Soc Trans ; 46(3): 609-617, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29678952

RESUMEN

Viruses exploit host metabolic and defence machinery for their own replication. The flaviviruses, which include Dengue (DENV), Yellow Fever (YFV), Japanese Encephalitis (JEV), West Nile (WNV) and Zika (ZIKV) viruses, infect a broad range of hosts, cells and tissues. Flaviviruses are largely transmitted by mosquito bites and humans are usually incidental, dead-end hosts, with the notable exceptions of YFV, DENV and ZIKV. Infection by flaviviruses elicits cellular responses including cell death via necrosis, pyroptosis (involving inflammation) or apoptosis (which avoids inflammation). Flaviviruses exploit these mechanisms and subvert them to prolong viral replication. The different effects induced by DENV, WNV, JEV and ZIKV are reviewed. Host cell surface proteoglycans (PGs) bearing glycosaminoglycan (GAG) polysaccharides - heparan/chondroitin sulfate (HS/CS) - are involved in initial flavivirus attachment and during the expression of non-structural viral proteins play a role in disease aetiology. Recent work has shown that ZIKV-infected cells are protected from cell death by exogenous heparin (a GAG structurally similar to host cell surface HS), raising the possibility of further subtle involvement of HS PGs in flavivirus disease processes. The aim of this review is to synthesize information regarding DENV, WNV, JEV and ZIKV from two areas that are usually treated separately: the response of host cells to infection by flaviviruses and the involvement of cell surface GAGs in response to those infections.


Asunto(s)
Muerte Celular , Infecciones por Flaviviridae/fisiopatología , Flaviviridae/fisiología , Interacciones Huésped-Patógeno , Animales , Infecciones por Flaviviridae/inmunología , Infecciones por Flaviviridae/transmisión , Infecciones por Flaviviridae/virología , Humanos , Mosquitos Vectores , Replicación Viral
16.
Mol Biosyst ; 13(5): 852-865, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28317949

RESUMEN

In multicellular organisms, a large number of proteins interact with the polyanionic polysaccharides heparan sulphate (HS) and heparin. These interactions are usually assumed to be dominated by charge-charge interactions between the anionic carboxylate and/or sulfate groups of the polysaccharide and cationic amino acids of the protein. A major question is whether there exist conserved amino acid sequences for HS/heparin binding among these diverse proteins. Potentially conserved HS/heparin binding sequences were sought amongst 437 HS/heparin binding proteins. Amino acid sequences were extracted and compared using a Levenshtein distance metric. The resultant similarity matrices were visualised as graphs, enabling extraction of strongly conserved sequences from highly variable primary sequences while excluding short, core regions. This approach did not reveal extensive, conserved HS/heparin binding sequences, rather a number of shorter, more widely spaced sequences that may work in unison to form heparin-binding sites on protein surfaces, arguing for convergent evolution. Thus, it is the three-dimensional arrangement of these conserved motifs on the protein surface, rather than the primary sequence per se, which are the evolutionary elements.


Asunto(s)
Heparina/metabolismo , Heparitina Sulfato/metabolismo , Proteínas/química , Proteínas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Biología Computacional/métodos , Secuencia Conservada , Humanos , Modelos Moleculares , Unión Proteica , Mapas de Interacción de Proteínas
17.
Glycoconj J ; 34(3): 405-410, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27523650

RESUMEN

Studying polysaccharide-protein interactions under physiological conditions by conventional techniques is challenging. Ideally, macromolecules could be followed by both in vitro spectroscopy experiments as well as in tissues using microscopy, to enable a proper comparison of results over these different scales but, often, this is not feasible. The cell surface and extracellular matrix polysaccharides, glycosaminoglycans (GAGs) lack groups that can be detected selectively in the biological milieu. The introduction of 19F labels into GAG polysaccharides is explored and the interaction of a labelled GAG with the heparin-binding protein, antithrombin, employing 19F NMR spectroscopy is followed. Furthermore, the ability of 19F labelled GAGs to be imaged using CARS microscopy is demonstrated. 19F labelled GAGs enable both 19F NMR protein-GAG binding studies in solution at the molecular level and non-linear microscopy at a microscopic scale to be conducted on the same material, essentially free of background signals.


Asunto(s)
Imagen por Resonancia Magnética con Fluor-19/métodos , Flúor/química , Glicosaminoglicanos/química , Sondas Moleculares/química , Coloración y Etiquetado/métodos , Acetilación , Antitrombinas/química , Glicosaminoglicanos/análisis , Halogenación , Espectroscopía de Resonancia Magnética/métodos , Sondas Moleculares/análisis , Unión Proteica , Soluciones , Espectrometría Raman/métodos
18.
Sci Rep ; 6: 38028, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-28004702

RESUMEN

The sample compartment for high-throughput synchrotron radiation circular dichroism (HT-SRCD) has been developed to satisfy an increased demand of protein characterisation in terms of folding and binding interaction properties not only in the traditional field of structural biology but also in the growing research area of material science with the potential to save time by 80%. As the understanding of protein behaviour in different solvent environments has increased dramatically the development of novel functions such as recombinant proteins modified to have different functions from harvesting solar energy to metabolonics for cleaning heavy and metal and organic molecule pollutions, there is a need to characterise speedily these system.


Asunto(s)
Dicroismo Circular/instrumentación , Proteínas/química , Humanos , Pliegue de Proteína , Sincrotrones
19.
Biochemistry ; 55(48): 6605-6616, 2016 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-27933797

RESUMEN

Avian influenza A viruses, which can also propagate between humans, present serious pandemic threats, particularly in Asia. The specificity (selectivity) of interactions between the recognition protein hemagglutinin (HA) of the virus capsid and the glycoconjugates of host cells also contributes to the efficient spread of the virus by aerosol between humans. Some avian origin viruses, such as H1N1 (South Carolina 1918), have improved their selectivity for human receptors by mutation in the HA receptor binding site, to generate pandemic viruses. Molecular details and dynamics of glycan-HA interactions are of interest, both in predicting the pandemic potential of a new emerging strain and in searching for new antiviral drugs. Two complementary techniques, 1H saturation transfer difference (1H STD) nuclear magnetic resonance and molecular dynamics (MD) simulation, were applied to analyze the interaction of the new H7 (A/Anhui/1/13 H7N9) with LSTa [Neu5Ac α(2→3) Gal ß(1→3) GlcNAc ß(1→3) Gal ß(1→4) Glc] and LSTc [Neu5Ac α(2→6) Gal ß(1→4) GlcNAc ß(1→3) Gal ß(1→4) Glc] pentasaccharides, models of avian and human receptor glycans. Their interactions with H7 were analyzed for the first time using 1H STD and MD, revealing structural and dynamic behavior that could not be obtained from crystal structures, and contributing to glycan-HA specificity. This highlighted aspects that could affect glycan-HA recognition, including the mutation H7 G228S, which increases H2 and H3 specificity for the human receptor. Finally, interactions between LSTc and H7 were compared with those between LSTc and H1 of H1N1 (South Carolina 1918), contributing to our understanding of the recognition ability of HAs.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H7N9 del Virus de la Influenza A/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Polisacáridos/metabolismo , Receptores de Superficie Celular/metabolismo , Sitios de Unión , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Humanos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Gripe Humana/virología , Cinética , Unión Proteica , Dominios Proteicos , Receptores de Superficie Celular/química , Receptores Virales/química , Receptores Virales/metabolismo
20.
Int J Cardiol ; 212 Suppl 1: S5-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27264867

RESUMEN

Heparin, the widely used anticoagulant drug, is unusual among major pharmaceutical agents being neither single chemical entity nor a defined mixture of compounds. Its composition, while conforming to approximate average disaccharide composition or sulfation levels, exhibits heterogeneity and variability depending on the source, as well as its geographical origin. Furthermore, individual polysaccharide chains, whose physico-chemical properties are extremely similar, cannot be separated with current state-of-the-art techniques, presenting a challenge to those interested in the quality control of heparin, in ensuring its provenance and safety, and those with an interest in investigating the relationships between its structure and biological activity. The review consists of two main sections: The first is the Introduction, comprising (i) The History, Occurrence and Use of Heparin and (ii) Approaches to Structure-Activity Relationships. The second section is Improved Techniques for Structural Analysis, comprising; (i) Separation and Identification, (ii) Spectroscopic Methods, (iii) Enzymatic Approaches and (iv) Other Physico-Chemical Approaches. The ~60 references cover recent technological advances in the study of heparin structural analysis, largely since 2010.


Asunto(s)
Anticoagulantes/química , Anticoagulantes/farmacología , Heparina/química , Heparina/farmacología , Anticoagulantes/síntesis química , Diseño de Fármacos , Heparina/síntesis química , Humanos , Peso Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...