RESUMEN
Lymphangioleiomyomatosis (LAM) is a rare genetic lung disease. Unfortunately, treatment with the mTORC1 inhibitor Rapamycin only slows disease progression, and incomplete responses are common. Thus, there remains an urgent need to identify new targets for the development of curative LAM treatments. Nitazoxanide (NTZ) is an orally bioavailable antiprotozoal small molecule drug approved for the treatment of diarrhea caused by Giardia lamblia or Cryptosporidium parvum in children and adults, with a demonstrated mTORC1 inhibitory effect in several human cell lines. NTZ's excellent safety profile characterized by its more than 20 years of clinical use makes it a promising candidate for repurposing. Our rationale for this study was to further investigate NTZ's effect using in vitro and in vivo LAM models and to elucidate the underlying molecular mechanism beyond mTORC1 inhibition. For this purpose, we investigated cell proliferation, cell viability, and changes in protein phosphorylation and expression in primary human cell cultures derived from LAM lung samples before translating our results into a syngeneic mouse model utilizing Tsc2-null cells. NTZ reduced cell growth for all tested cell lines at a dose of about 30 µM. Lower doses than that had no effect on cell viability, but doses above 45 µM lowered the viability by about 10 to 15% compared to control. Interestingly, our western blot revealed no inhibition of mTORC1 and only a mild effect on active ß-Catenin. Instead, NTZ had a pronounced effect on reducing pAkt. In the mouse model, prophylactic NTZ treatment via the intraperitoneal and oral routes had some effects on reducing lung lesions and improving body weight retention, but the results remain inconclusive.
Asunto(s)
Proliferación Celular , Reposicionamiento de Medicamentos , Linfangioleiomiomatosis , Nitrocompuestos , Tiazoles , Humanos , Animales , Nitrocompuestos/farmacología , Linfangioleiomiomatosis/tratamiento farmacológico , Linfangioleiomiomatosis/patología , Linfangioleiomiomatosis/metabolismo , Ratones , Tiazoles/farmacología , Tiazoles/uso terapéutico , Proliferación Celular/efectos de los fármacos , Femenino , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacosRESUMEN
Recurrent infections are a hallmark of STAT3 dominant-negative hyper-IgE syndrome (STAT3 HIES), a rare immunodeficiency syndrome previously known as Jobs syndrome, along with elevated IgE levels and impaired neutrophil function. We have been developing nanoparticles with neutrophil trophism that home to the sites of infection via these first-responder leukocytes, named neutrophil-avid nanocarriers (NANs). Here, we demonstrate that human neutrophils can phagocytose nanogels (NGs), a type of NAN, with enhanced uptake after particle serum opsonization, comparing neutrophils from healthy individuals to those with STAT3 HIES, where both groups exhibit NG uptake; however, the patient group showed reduced phagocytosis efficiency with serum-opsonized NANs. Proteomic analysis of NG protein corona revealed complement components, particularly C3, as predominant in both groups. Difference between groups includes STAT3 HIES samples with higher neutrophil protein and lower acute-phase protein expression. The study suggests that despite neutrophil dysfunction in STAT3 HIES, NANs have potential for directed delivery of cargo therapeutics to improve neutrophil infection clearance.
Asunto(s)
Síndrome de Job , Nanopartículas , Neutrófilos , Fagocitosis , Factor de Transcripción STAT3 , Humanos , Neutrófilos/metabolismo , Neutrófilos/inmunología , Síndrome de Job/metabolismo , Factor de Transcripción STAT3/metabolismo , Femenino , Masculino , Adulto , Proteómica/métodos , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Complemento C3/metabolismoRESUMEN
Lymphangioleiomyomatosis (LAM) is a progressive cystic lung disease caused by tuberous sclerosis complex 1/2 (TSC1/2) gene mutations in pulmonary mesenchymal cells, resulting in activation of the mechanistic target of rapamycin complex 1 (mTORC1). A subset of patients with LAM develop pulmonary vascular remodeling and pulmonary hypertension. Little, however, is known regarding how LAM cells communicate with endothelial cells (ECs) to trigger vascular remodeling. In end-stage LAM lung explants, we identified EC dysfunction characterized by increased EC proliferation and migration, defective angiogenesis, and dysmorphic endothelial tube network formation. To model LAM disease, we used an mTORC1 gain-of-function mouse model with a Tsc2 KO (Tsc2KO) specific to lung mesenchyme (Tbx4LME-Cre Tsc2fl/fl), similar to the mesenchyme-specific genetic alterations seen in human disease. As early as 8 weeks of age, ECs from mice exhibited marked transcriptomic changes despite an absence of morphological changes to the distal lung microvasculature. In contrast, 1-year-old Tbx4LME-Cre Tsc2fl/fl mice spontaneously developed pulmonary vascular remodeling with increased medial thickness. Single-cell RNA-Seq of 1-year-old mouse lung cells identified paracrine ligands originating from Tsc2KO mesenchyme, which can signal through receptors in arterial ECs. These ECs had transcriptionally altered genes including those in pathways associated with blood vessel remodeling. The proposed pathophysiologic mesenchymal ligand-EC receptor crosstalk highlights the importance of an altered mesenchymal cell/EC axis in LAM and other hyperactive mTORC1-driven diseases. Since ECs in patients with LAM and in Tbx4LME-Cre Tsc2fl/fl mice did not harbor TSC2 mutations, our study demonstrates that constitutively active mTORC1 lung mesenchymal cells orchestrated dysfunctional EC responses that contributed to pulmonary vascular remodeling.
Asunto(s)
Linfangioleiomiomatosis , Proteína 2 del Complejo de la Esclerosis Tuberosa , Esclerosis Tuberosa , Proteínas Supresoras de Tumor , Animales , Humanos , Lactante , Ratones , Células Endoteliales/metabolismo , Pulmón/metabolismo , Linfangioleiomiomatosis/genética , Linfangioleiomiomatosis/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mesodermo/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Remodelación Vascular/genética , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Técnicas In VitroRESUMEN
N-methyl-D-aspartate (NMDA) receptors are widely expressed in the central nervous system. However, their presence and function at extraneuronal sites is less well characterized. In the present study, we examined the expression of NMDA receptor subunit mRNA and protein in human pulmonary artery (HPA) by quantitative polymerase chain reaction (PCR), immunohistochemistry and immunoblotting. We demonstrate that both GluN1 and GluN2 subunit mRNAs are expressed in HPA. In addition, GluN1 and GluN2 (A-D) subunit proteins are expressed by human pulmonary artery smooth muscle cells (HPASMCs) in vitro and in vivo. These subunits localize on the surface of HPASMCs and form functional ion channels as evidenced by whole-cell patch-clamp electrophysiology and reduced phenylephrine-induced contractile responsiveness of human pulmonary artery by the NMDA receptor antagonist MK801 under hypoxic condition. HPASMCs also express high levels of serine racemase and vesicular glutamate transporter 1, suggesting a potential source of endogenous agonists for NMDA receptor activation. Our findings show HPASMCs express functional NMDA receptors in line with their effect on pulmonary vasoconstriction, and thereby suggest a novel therapeutic target for pharmacological modulations in settings associated with pulmonary vascular dysfunction.
Asunto(s)
Músculo Liso Vascular/metabolismo , Arteria Pulmonar/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Animales , Células Cultivadas , Humanos , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Vasoconstricción/genéticaRESUMEN
Lymphangioleiomyomatosis is a rare destructive lung disease affecting primarily women and is the primary lung manifestation of tuberous sclerosis complex (TSC). In lymphangioleiomyomatosis, biallelic loss of TSC1/2 leads to hyperactivation of mTORC1 and inhibition of autophagy. To determine how the metabolic vulnerabilities of TSC2-deficient cells can be targeted, we performed a high-throughput screen utilizing the "Repurposing" library at the Broad Institute of MIT and Harvard (Cambridge, MA), with or without the autophagy inhibitor chloroquine. Ritanserin, an inhibitor of diacylglycerol kinase alpha (DGKA), was identified as a selective inhibitor of proliferation of Tsc2-/- mouse embryonic fibroblasts (MEF), with no impact on Tsc2+/+ MEFs. DGKA is a lipid kinase that metabolizes diacylglycerol to phosphatidic acid, a key component of plasma membranes. Phosphatidic acid levels were increased 5-fold in Tsc2-/- MEFs compared with Tsc2+/+ MEFs, and treatment of Tsc2-/- MEFs with ritanserin led to depletion of phosphatidic acid as well as rewiring of phospholipid metabolism. Macropinocytosis is known to be upregulated in TSC2-deficient cells. Ritanserin decreased macropinocytic uptake of albumin, limited the number of lysosomes, and reduced lysosomal activity in Tsc2-/- MEFs. In a mouse model of TSC, ritanserin treatment decreased cyst frequency and volume, and in a mouse model of lymphangioleiomyomatosis, genetic downregulation of DGKA prevented alveolar destruction and airspace enlargement. Collectively, these data indicate that DGKA supports macropinocytosis in TSC2-deficient cells to maintain phospholipid homeostasis and promote proliferation. Targeting macropinocytosis with ritanserin may represent a novel therapeutic approach for the treatment of TSC and lymphangioleiomyomatosis. SIGNIFICANCE: This study identifies macropinocytosis and phospholipid metabolism as novel mechanisms of metabolic homeostasis in mTORC1-hyperactive cells and suggest ritanserin as a novel therapeutic strategy for use in mTORC1-hyperactive tumors, including pancreatic cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2086/F1.large.jpg.
Asunto(s)
Diacilglicerol Quinasa/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Linfangioleiomiomatosis/tratamiento farmacológico , Pinocitosis/efectos de los fármacos , Ritanserina/farmacología , Proteína 2 del Complejo de la Esclerosis Tuberosa/deficiencia , Esclerosis Tuberosa/tratamiento farmacológico , Angiolipoma/genética , Animales , Autofagia/efectos de los fármacos , Proliferación Celular , Cloroquina/farmacología , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Regulación hacia Abajo , Sinergismo Farmacológico , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Expresión Génica , Neoplasias Renales/genética , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/patología , Linfangioleiomiomatosis/etiología , Linfangioleiomiomatosis/patología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Desnudos , Nutrientes/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfolípidos/metabolismo , Pinocitosis/fisiología , Esclerosis Tuberosa/complicacionesRESUMEN
Lymphangioleiomyomatosis (LAM) is a rare fatal cystic lung disease due to bi-allelic inactivating mutations in tuberous sclerosis complex (TSC1/TSC2) genes coding for suppressors of the mechanistic target of rapamycin complex 1 (mTORC1). The origin of LAM cells is still unknown. Here, we profile a LAM lung compared to an age- and sex-matched healthy control lung as a hypothesis-generating approach to identify cell subtypes that are specific to LAM. Our single-cell RNA sequencing (scRNA-seq) analysis reveals novel mesenchymal and transitional alveolar epithelial states unique to LAM lung. This analysis identifies a mesenchymal cell hub coordinating the LAM disease phenotype. Mesenchymal-restricted deletion of Tsc2 in the mouse lung produces a mTORC1-driven pulmonary phenotype, with a progressive disruption of alveolar structure, a decline in pulmonary function, increase of rapamycin-sensitive expression of WNT ligands, and profound female-specific changes in mesenchymal and epithelial lung cell gene expression. Genetic inactivation of WNT signaling reverses age-dependent changes of mTORC1-driven lung phenotype, but WNT activation alone in lung mesenchyme is not sufficient for the development of mouse LAM-like phenotype. The alterations in gene expression are driven by distinctive crosstalk between mesenchymal and epithelial subsets of cells observed in mesenchymal Tsc2-deficient lungs. This study identifies sex- and age-specific gene changes in the mTORC1-activated lung mesenchyme and establishes the importance of the WNT signaling pathway in the mTORC1-driven lung phenotype.
Asunto(s)
Pulmón/metabolismo , Linfangioleiomiomatosis/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mesodermo/metabolismo , Factores de Edad , Anciano , Animales , Femenino , Humanos , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Linfangioleiomiomatosis/tratamiento farmacológico , Linfangioleiomiomatosis/genética , Linfangioleiomiomatosis/fisiopatología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Mesodermo/efectos de los fármacos , Ratones , Factores Sexuales , Sirolimus/administración & dosificación , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Vía de Señalización WntRESUMEN
Lymphangioleiomyomatosis (LAM) is a rare metastatic cystic lung disease due to a mutation in a TSC tumor suppressor, resulting in hyperactive mTOR growth pathways. Sirolimus (rapamycin), an allosteric mTORC1 inhibitor, is a therapeutic option for women with LAM but it only maintains lung volume during treatment and does not provide benefit for all LAM patients. The two major mTORC1 protein synthesis pathways are via S6K/S6 or 4E-BP/eIF4E activation. We aimed to investigate rapamycin in combination with compounds that target associated growth pathways, with the potential to be additive to rapamycin. In this study we demonstrated that rapamycin, at a clinically tolerable concentration (10 nM), inhibited the phosphorylation of S6, but not the critical eIF4E releasing Thr 37/46 phosphorylation sites of 4E-BP1 in TSC2-deficient LAM-derived cells. We also characterized the abundant protein expression of peIF4E within LAM lesions. A selective MNK1/2 inhibitor eFT508 inhibited the phosphorylation of eIF4E but did not reduce TSC2-null cell growth. In contrast, a PI3K/mTOR inhibitor omipalisib blocked the phosphorylation of Akt and both S6K/S6 and 4E-BP/eIF4E branches, and additively decreased the growth of TSC2-null cells with rapamycin. Omipalisib, or another inhibitor of both major mTORC1 growth pathways and pAkt, might provide therapeutic options for TSC2-deficient cancers including, but not limited to, LAM.
Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Proteína 2 del Complejo de la Esclerosis Tuberosa/deficiencia , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Piridazinas , Quinolinas/farmacología , Sirolimus/farmacología , Sulfonamidas/farmacologíaRESUMEN
Pulmonary lymphangioleiomyomatosis (LAM) is a slow-progressing metastatic disease that is driven by mutations in the tumor suppressor tuberous sclerosis complex 1/2 (TSC1/2). Rapamycin inhibits LAM cell proliferation and is the only approved treatment, but it cannot cause the regression of existing lesions and can only stabilize the disease. However, in other cancers, immunotherapies such as checkpoint blockade against PD-1 and its ligand PD-L1 have shown promise in causing tumor regression and even curing some patients. Thus, we asked whether PD-L1 has a role in LAM progression. In vitro, PD-L1 expression in murine Tsc2-null cells is unaffected by mTOR inhibition with torin but can be upregulated by IFN-γ. Using immunohistochemistry and single-cell flow cytometry, we found increased PD-L1 expression both in human lung tissue from patients with LAM and in Tsc2-null lesions in a murine model of LAM. In this model, PD-L1 is highly expressed in the lung by antigen-presenting and stromal cells, and activated T cells expressing PD-1 infiltrate the affected lung. In vivo treatment with anti-PD-1 antibody significantly prolongs mouse survival in the model of LAM. Together, these data demonstrate that PD-1/PD-L1-mediated immunosuppression may occur in LAM, and suggest new opportunities for therapeutic targeting that may provide benefits beyond those of rapamycin.
Asunto(s)
Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/metabolismo , Pulmón/metabolismo , Linfangioleiomiomatosis/metabolismo , Esclerosis Tuberosa/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Antígeno B7-H1/inmunología , Estudios de Casos y Controles , Proliferación Celular , Modelos Animales de Enfermedad , Humanos , Pulmón/efectos de los fármacos , Pulmón/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Linfangioleiomiomatosis/tratamiento farmacológico , Linfangioleiomiomatosis/inmunología , Linfangioleiomiomatosis/patología , Ratones , Ratones Endogámicos C57BL , Esclerosis Tuberosa/tratamiento farmacológico , Esclerosis Tuberosa/inmunología , Esclerosis Tuberosa/patología , Regulación hacia ArribaRESUMEN
Lymphangioleiomyomatosis (LAM) is a rare, almost exclusively female lung disease linked to inactivating mutations in tuberous sclerosis complex 2 (TSC2), a tumor suppressor gene that controls cell metabolic state and growth via regulation of the mechanistic target of rapamycin (mTORC1) signaling. mTORC1 is frequently activated in human cancers and, although the mTORC1 inhibitor rapamycin has a cytostatic effect, it is, in general, unable to elicit a robust curative effect or tumor regression. Using RNA-Seq, we identified (1) Insulin-like Growth Factor (IGF2) as one of the genes with the highest fold-change difference between human TSC2-null and TSC2-expressing angiomyolipoma cells from a patient with LAM, and (2) the mouse IGF2 homolog Igf2, as a top-ranking gene according to fold change between Tsc2-/- and Tsc2+/+ mouse embryo fibroblasts (MEFs). We extended transcript-level findings to protein level, observing increased Igf2 protein expression and Igf2 secretion by Tsc2-/- MEFs. Increased Igf2 expression was not due to epigenetic imprinting, but was partially mediated through the Stat3 pathway and was completely insensitive to rapamycin treatment. An siRNA-mediated decrease of Igf2 resulted in decreased Stat3 phosphorylation, suggesting presence of an autocrine Igf2/Stat3 amplification cycle in Tsc2-/- MEFs. In human pulmonary LAM lesions and metastatic cell clusters, high levels of IGF2 were associated with mTORC1 activation. In addition, treatment of three primary IGF2-expressing LAM lung cell lines with rapamycin did not result in IGF2 level changes. Thus, targeting of IGF2 signaling may be of therapeutic value to LAM patients, particularly those who are unresponsive to rapamycin.
Asunto(s)
Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Factor II del Crecimiento Similar a la Insulina/biosíntesis , Neoplasias Pulmonares/metabolismo , Transducción de Señal , Sirolimus/farmacología , Proteínas Supresoras de Tumor/deficiencia , Animales , Línea Celular Tumoral , Embrión de Mamíferos/patología , Fibroblastos/patología , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Linfangioleiomiomatosis , Ratones , Ratones Noqueados , Proteína 2 del Complejo de la Esclerosis TuberosaRESUMEN
Pulmonary lymphangioleiomyomatosis (LAM), a rare progressive lung disease associated with mutations of the tuberous sclerosis complex 2 (Tsc2) tumor suppressor gene, manifests by neoplastic growth of LAM cells, induction of cystic lung destruction, and respiratory failure. LAM severity correlates with upregulation in serum of the prolymphangiogenic vascular endothelial growth factor D (VEGF-D) that distinguishes LAM from other cystic diseases. The goals of our study was to determine whether Tsc2 deficiency upregulates VEGF-D, and whether axitinib, the Food and Drug Administration-approved small-molecule inhibitor of VEGF receptor (VEGFR) signaling, will reduce Tsc2-null lung lesion growth in a mouse model of LAM. Our data demonstrate upregulation of VEGF-D in the serum and lung lining in mice with Tsc2-null lesions. Progressive growth of Tsc2-null lesions induces recruitment and activation of inflammatory cells and increased nitric oxide production. Recruited cells isolated from the lung lining of mice with Tsc2-null lesions demonstrate upregulated expression of provasculogenic Vegfa, prolymphangiogenic Figf, and proinflammatory Nos2, Il6, and Ccl2 genes. Importantly, axitinib is an effective inhibitor of Tsc2-null lesion growth and inflammatory cell recruitment, which correlates with reduced VEGF-D levels in serum and lung lining. Our data demonstrate that pharmacological inhibition of VEGFR signaling with axitinib inhibits Tsc2-null lesion growth, attenuates recruitment and activation of inflammatory cells, and reduces VEGF-D levels systemically and in the lung lining. Our study suggests a potential therapeutic benefit of inhibition of VEGFR signaling for treatment of LAM.