Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 42(Database issue): D966-74, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24217912

RESUMEN

The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have developed logical definitions for 46% of all HPO classes using terms from ontologies for anatomy, cell types, function, embryology, pathology and other domains. This allows interoperability with several resources, especially those containing phenotype information on model organisms such as mouse and zebrafish. Here we describe the updated HPO database, which provides annotations of 7,278 human hereditary syndromes listed in OMIM, Orphanet and DECIPHER to classes of the HPO. Various meta-attributes such as frequency, references and negations are associated with each annotation. Several large-scale projects worldwide utilize the HPO for describing phenotype information in their datasets. We have therefore generated equivalence mappings to other phenotype vocabularies such as LDDB, Orphanet, MedDRA, UMLS and phenoDB, allowing integration of existing datasets and interoperability with multiple biomedical resources. We have created various ways to access the HPO database content using flat files, a MySQL database, and Web-based tools. All data and documentation on the HPO project can be found online.


Asunto(s)
Ontologías Biológicas , Bases de Datos Factuales , Enfermedades Genéticas Congénitas/genética , Fenotipo , Animales , Enfermedades Genéticas Congénitas/diagnóstico , Genómica , Humanos , Internet , Ratones
2.
Dis Model Mech ; 6(2): 358-72, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23104991

RESUMEN

Numerous disease syndromes are associated with regions of copy number variation (CNV) in the human genome and, in most cases, the pathogenicity of the CNV is thought to be related to altered dosage of the genes contained within the affected segment. However, establishing the contribution of individual genes to the overall pathogenicity of CNV syndromes is difficult and often relies on the identification of potential candidates through manual searches of the literature and online resources. We describe here the development of a computational framework to comprehensively search phenotypic information from model organisms and single-gene human hereditary disorders, and thus speed the interpretation of the complex phenotypes of CNV disorders. There are currently more than 5000 human genes about which nothing is known phenotypically but for which detailed phenotypic information for the mouse and/or zebrafish orthologs is available. Here, we present an ontology-based approach to identify similarities between human disease manifestations and the mutational phenotypes in characterized model organism genes; this approach can therefore be used even in cases where there is little or no information about the function of the human genes. We applied this algorithm to detect candidate genes for 27 recurrent CNV disorders and identified 802 gene-phenotype associations, approximately half of which involved genes that were previously reported to be associated with individual phenotypic features and half of which were novel candidates. A total of 431 associations were made solely on the basis of model organism phenotype data. Additionally, we observed a striking, statistically significant tendency for individual disease phenotypes to be associated with multiple genes located within a single CNV region, a phenomenon that we denote as pheno-clustering. Many of the clusters also display statistically significant similarities in protein function or vicinity within the protein-protein interaction network. Our results provide a basis for understanding previously un-interpretable genotype-phenotype correlations in pathogenic CNVs and for mobilizing the large amount of model organism phenotype data to provide insights into human genetic disorders.


Asunto(s)
Biología Computacional/métodos , Variaciones en el Número de Copia de ADN/genética , Enfermedad/genética , Mutación/genética , Pez Cebra/genética , Animales , Análisis por Conglomerados , Estudios de Asociación Genética , Genoma/genética , Humanos , Ratones , Fenotipo , Especificidad de la Especie
3.
Nucleic Acids Res ; 41(Database issue): D854-60, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23074187

RESUMEN

ZFIN, the Zebrafish Model Organism Database (http://zfin.org), is the central resource for zebrafish genetic, genomic, phenotypic and developmental data. ZFIN curators manually curate and integrate comprehensive data involving zebrafish genes, mutants, transgenics, phenotypes, genotypes, gene expressions, morpholinos, antibodies, anatomical structures and publications. Integrated views of these data, as well as data gathered through collaborations and data exchanges, are provided through a wide selection of web-based search forms. Among the vertebrate model organisms, zebrafish are uniquely well suited for rapid and targeted generation of mutant lines. The recent rapid production of mutants and transgenic zebrafish is making management of data associated with these resources particularly important to the research community. Here, we describe recent enhancements to ZFIN aimed at improving our support for mutant and transgenic lines, including (i) enhanced mutant/transgenic search functionality; (ii) more expressive phenotype curation methods; (iii) new downloads files and archival data access; (iv) incorporation of new data loads from laboratories undertaking large-scale generation of mutant or transgenic lines and (v) new GBrowse tracks for transgenic insertions, genes with antibodies and morpholinos.


Asunto(s)
Bases de Datos Genéticas , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Genómica , Internet , Modelos Animales , Mutación , Fenotipo
4.
F1000Res ; 2: 30, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24358873

RESUMEN

Phenotype analyses, e.g. investigating metabolic processes, tissue formation, or organism behavior, are an important element of most biological and medical research activities. Biomedical researchers are making increased use of ontological standards and methods to capture the results of such analyses, with one focus being the comparison and analysis of phenotype information between species. We have generated a cross-species phenotype ontology for human, mouse and zebrafish that contains classes from the Human Phenotype Ontology, Mammalian Phenotype Ontology, and generated classes for zebrafish phenotypes. We also provide up-to-date annotation data connecting human genes to phenotype classes from the generated ontology. We have included the data generation pipeline into our continuous integration system ensuring stable and up-to-date releases. This article describes the data generation process and is intended to help interested researchers access both the phenotype annotation data and the associated cross-species phenotype ontology. The resource described here can be used in sophisticated semantic similarity and gene set enrichment analyses for phenotype data across species. The stable releases of this resource can be obtained from http://purl.obolibrary.org/obo/hp/uberpheno/.

5.
Hum Mutat ; 33(5): 858-66, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22331800

RESUMEN

Mouse phenotype data represents a valuable resource for the identification of disease-associated genes, especially where the molecular basis is unknown and there is no clue to the candidate gene's function, pathway involvement or expression pattern. However, until recently these data have not been systematically used due to difficulties in mapping between clinical features observed in humans and mouse phenotype annotations. Here, we describe a semantic approach to solve this problem and demonstrate highly significant recall of known disease-gene associations and orthology relationships. A Web application (MouseFinder; www.mousemodels.org) has been developed to allow users to search the results of our whole-phenome comparison of human and mouse. We demonstrate its use in identifying ARTN as a strong candidate gene within the 1p34.1-p32 mapped locus for a hereditary form of ptosis.


Asunto(s)
Estudios de Asociación Genética , Fenotipo , Animales , Bases de Datos Genéticas , Enfermedad/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Anotación de Secuencia Molecular , Mutación , Sistemas en Línea , Terminología como Asunto
6.
Methods Cell Biol ; 104: 311-25, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21924170

RESUMEN

The publication of a research article is the beginning of the digital life of its associated data. In this article, we will present an overview of how data are incorporated into ZFIN, with a particular emphasis on helping researchers make their work accessible to online databases.


Asunto(s)
Minería de Datos/métodos , Bases de Datos Genéticas/normas , Difusión de la Información/métodos , Pez Cebra/genética , Animales , Gestión de la Información/métodos , Gestión de la Información/normas , Terminología como Asunto
7.
Nucleic Acids Res ; 39(Database issue): D822-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21036866

RESUMEN

ZFIN, the Zebrafish Model Organism Database, http://zfin.org, serves as the central repository and web-based resource for zebrafish genetic, genomic, phenotypic and developmental data. ZFIN manually curates comprehensive data for zebrafish genes, phenotypes, genotypes, gene expression, antibodies, anatomical structures and publications. A wide-ranging collection of web-based search forms and tools facilitates access to integrated views of these data promoting analysis and scientific discovery. Data represented in ZFIN are derived from three primary sources: curation of zebrafish publications, individual research laboratories and collaborations with bioinformatics organizations. Data formats include text, images and graphical representations. ZFIN is a dynamic resource with data added daily as part of our ongoing curation process. Software updates are frequent. Here, we describe recent additions to ZFIN including (i) enhanced access to images, (ii) genomic features, (iii) genome browser, (iv) transcripts, (v) antibodies and (vi) a community wiki for protocols and antibodies.


Asunto(s)
Bases de Datos Genéticas , Pez Cebra/genética , Animales , Anticuerpos , Expresión Génica , Genómica , Modelos Animales , Fenotipo , ARN Mensajero/química , ARN Mensajero/metabolismo , Pez Cebra/inmunología , Pez Cebra/metabolismo
8.
Genome Res ; 19(7): 1316-23, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19498102

RESUMEN

Effective use of the human and mouse genomes requires reliable identification of genes and their products. Although multiple public resources provide annotation, different methods are used that can result in similar but not identical representation of genes, transcripts, and proteins. The collaborative consensus coding sequence (CCDS) project tracks identical protein annotations on the reference mouse and human genomes with a stable identifier (CCDS ID), and ensures that they are consistently represented on the NCBI, Ensembl, and UCSC Genome Browsers. Importantly, the project coordinates on manually reviewing inconsistent protein annotations between sites, as well as annotations for which new evidence suggests a revision is needed, to progressively converge on a complete protein-coding set for the human and mouse reference genomes, while maintaining a high standard of reliability and biological accuracy. To date, the project has identified 20,159 human and 17,707 mouse consensus coding regions from 17,052 human and 16,893 mouse genes. Three evaluation methods indicate that the entries in the CCDS set are highly likely to represent real proteins, more so than annotations from contributing groups not included in CCDS. The CCDS database thus centralizes the function of identifying well-supported, identically-annotated, protein-coding regions.


Asunto(s)
Secuencia de Consenso , Genoma , Sistemas de Lectura Abierta/genética , Animales , Humanos , Ratones , Alineación de Secuencia
9.
Genomics ; 90(2): 285-9, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17543498

RESUMEN

An essential component of microtubules, alpha-tubulin is also a multigene family in many species. An orthology-based nomenclature for this gene family has previously been difficult to assign due to incomplete genome builds and the high degree of sequence similarity between members of this family. Using the current genome builds, sequence analysis of human, mouse, and rat alpha-tubulin genes has enabled an updated nomenclature to be generated. This revised nomenclature provides a unified language for the discussion of these genes in mammalian species; it has been approved by the gene nomenclature committees of the three species and is supported by researchers in the field.


Asunto(s)
Ratones/genética , Familia de Multigenes , Ratas/genética , Terminología como Asunto , Tubulina (Proteína)/genética , Animales , ADN Complementario/metabolismo , Humanos , Filogenia
10.
Mol Biochem Parasitol ; 147(1): 20-9, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16469396

RESUMEN

Antigen-specific CD4+ T lymphocyte responses contribute to protective immunity against Babesia bovis, however the antigens that induce these responses remain largely unknown. A proteomic approach was used to identify novel B. bovis antigens recognized by memory CD4+ T cells from immune cattle. Fractions obtained from merozoites separated by continuous-flow electrophoresis (CFE) that contained proteins ranging from 20 to 83 kDa were previously shown to stimulate memory CD4+ lymphocyte responses in B. bovis-immune cattle. Expression library screening with rabbit antiserum raised against an immunostimulatory CFE fraction identified a clone encoding a predicted 78 kDa protein. BLAST analysis revealed sequence identity of this B. bovis protein with Plasmodium falciparum fatty acyl coenzyme A synthetase (ACS) family members (PfACS1-PfACS11), and the protein was designated B. bovis acyl-CoA synthetase 1 (ACS1). Southern blot analysis indicated that B. bovis ACS1 is encoded by a single gene, although BLAST analysis of the preliminary B. bovis genome sequence identified two additional family members, ACS2 and ACS3. Peripheral blood lymphocytes and CD4+ T cell lines from B. bovis-immune cattle proliferated significantly against recombinant ACS1 protein, consistent with its predicted involvement in protective immunity. However, immune sera from cattle recovered from B. bovis infection did not react with ACS1, indicating that epitopes may be conformationally dependent.


Asunto(s)
Babesia bovis/enzimología , Babesiosis/veterinaria , Linfocitos T CD4-Positivos/inmunología , Enfermedades de los Bovinos/inmunología , Coenzima A Ligasas/inmunología , Memoria Inmunológica , Secuencia de Aminoácidos , Animales , Anticuerpos Antiprotozoarios/sangre , Babesia bovis/inmunología , Babesiosis/inmunología , Bovinos , Enfermedades de los Bovinos/parasitología , Línea Celular , Coenzima A Ligasas/química , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Activación de Linfocitos , Masculino , Ratones , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...