Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros












Intervalo de año de publicación
1.
Cancers (Basel) ; 16(19)2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39410047

RESUMEN

Background: T-cell lymphomas (TCLs) are a group of heterogenous cancers with poor rates and duration of response. There remains a great challenge in risk stratification of these cancers. Cluster of differentiation (CD) 5 has shown prognostic implication in many subtypes of B-cell lymphoma; however, its role in TCLs is not known. Methods: We performed a single-institution retrospective analysis of newly diagnosed patients with TCL. CD5 positivity was determined based on positive results via immunohistochemistry and/or flow cytometry. We used univariate and multivariable analysis of biological factors to assess their association with survival outcomes. Results: A total of 194 patients with TCL spanning 14 subtypes were identified. CD5 positivity was noted in 63% of patients, with the highest proportion of CD5 expression in TFH TCL (93.9%), PTCL-NOS (82.9%), and ATLL (77.8%) (p = 0.00004). Older age at diagnosis (p = 0.001), stage III or IV disease (p = 0.05), and bone marrow involvement (p = 0.003) were also associated with CD5 expression. Complete response rates were numerically lower in patients with CD5+ TCL across all subtypes. OS/PFS was not statistically associated with CD5 status in the overall cohort; however there was significantly decreased OS in CD5+ TFH TCL (p = 0.04) and CD5+ ATLL (p = 0.04) patients. Conclusions: This study represents the first to examine CD5 expression as a prognostic biomarker for outcomes in TCL. The frequent expression of CD5 in the most common nodal TCL in the Western world underpins its potential as an attractive target for cellular therapies. Confirmation of these findings in a larger cohort and investigation of potential pathophysiological mechanisms explaining our observations are planned.

3.
J Infect Dis ; 230(1): 15-27, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052709

RESUMEN

Patients with B-cell lymphomas have altered cellular components of vaccine responses due to malignancy and therapy, and the optimal timing of vaccination relative to therapy remains unknown. Severe acute respiratory syndrome coronavirus 2 vaccines created an opportunity for new insights in vaccine timing because patients were challenged with a novel antigen across multiple phases of treatment. We studied serologic messenger RNA vaccine response in retrospective and prospective cohorts with lymphoma and chronic lymphocytic leukemia, paired with clinical and research immune parameters. Reduced serologic response was observed more frequently during active treatment, but nonresponse was also common within observation and posttreatment groups. Total immunoglobulin A and immunoglobulin M correlated with successful vaccine response. In individuals treated with anti-CD19-directed chimeric antigen receptor-modified T cells, nonresponse was associated with reduced B and T follicular helper cells. Predictors of vaccine response varied by disease and therapeutic group, and therefore further studies of immune health during and after cancer therapies are needed to individualize vaccine timing.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/terapia , Masculino , Femenino , Persona de Mediana Edad , Anciano , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Estudios Retrospectivos , COVID-19/inmunología , COVID-19/prevención & control , Estudios Prospectivos , SARS-CoV-2/inmunología , Adulto , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacunación , Inmunoglobulina M/sangre , Linfoma/inmunología , Linfoma/terapia , Anciano de 80 o más Años
4.
Blood Cancer Discov ; 5(4): 234-248, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38904305

RESUMEN

Despite advancements, acute myeloid leukemia (AML) remains unconquered by current therapies. Evidence of immune evasion during AML progression, such as HLA loss and T-cell exhaustion, suggests that antileukemic immune responses contribute to disease control and could be harnessed by immunotherapy. In this review, we discuss a spectrum of AML immunotherapy targets, encompassing cancer cell-intrinsic and surface antigens as well as targeting in the leukemic milieu, and how they can be tailored for personalized approaches. These targets are overviewed across major immunotherapy modalities applied to AML: immune checkpoint inhibitors, antibody-drug conjugates, therapeutic vaccines, bispecific/trispecific antibodies, and chimeric antigen receptor (CAR)-T and CAR-NK cells. Significance: Immune therapies in AML treatment show evolving promise. Ongoing research aims to customize approaches for varied patient profiles and clinical scenarios. This review covers immune surveillance mechanisms, therapy options like checkpoint inhibitors, antibodies, CAR-T/NK cells, and vaccines, as well as resistance mechanisms and microenvironment considerations.


Asunto(s)
Inmunoterapia , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/terapia , Inmunoterapia/métodos , Inmunoterapia/tendencias , Vacunas contra el Cáncer/uso terapéutico , Vacunas contra el Cáncer/inmunología , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología
5.
Nat Immunol ; 25(6): 1020-1032, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831106

RESUMEN

The efficacy of T cell-based immunotherapies is limited by immunosuppressive pressures in the tumor microenvironment. Here we show a predominant role for the interaction between BTLA on effector T cells and HVEM (TNFRSF14) on immunosuppressive tumor microenvironment cells, namely regulatory T cells. High BTLA expression in chimeric antigen receptor (CAR) T cells correlated with poor clinical response to treatment. Therefore, we deleted BTLA in CAR T cells and show improved tumor control and persistence in models of lymphoma and solid malignancies. Mechanistically, BTLA inhibits CAR T cells via recruitment of tyrosine phosphatases SHP-1 and SHP-2, upon trans engagement with HVEM. BTLA knockout thus promotes CAR signaling and subsequently enhances effector function. Overall, these data indicate that the BTLA-HVEM axis is a crucial immune checkpoint in CAR T cell immunotherapy and warrants the use of strategies to overcome this barrier.


Asunto(s)
Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Receptores Inmunológicos , Miembro 14 de Receptores del Factor de Necrosis Tumoral , Microambiente Tumoral , Animales , Humanos , Ratones , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos , Ratones Noqueados , Neoplasias/inmunología , Neoplasias/terapia , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Miembro 14 de Receptores del Factor de Necrosis Tumoral/inmunología , Miembro 14 de Receptores del Factor de Necrosis Tumoral/genética , Transducción de Señal , Linfocitos T Reguladores/inmunología , Microambiente Tumoral/inmunología
6.
Blood Cancer Discov ; 5(4): 229-233, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38713827

RESUMEN

In this commentary, we discuss the investigation into reports of T-cell malignancies following chimeric antigen receptor T-cell therapy. We argue that although these cases should be thoroughly examined, current data suggest that such risks with autologous chimeric antigen receptor T cells are remarkably low compared with other cancer treatments. We also emphasize the importance of continued research, transparent reporting, and participation in postauthorization safety studies.


Asunto(s)
Transformación Celular Neoplásica , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Linfocitos T , Humanos , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/genética , Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Neoplasias/inmunología , Neoplasias/terapia
7.
NEJM Evid ; 3(4): EVIDoa2300213, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38776868

RESUMEN

BACKGROUND: Administration of anti-CD19 chimeric antigen receptor T-cell (CART19) immunotherapy for large B-cell lymphomas (LBCLs), a subset of non-Hodgkin lymphoma (NHL), involves high costs and access to specialized tertiary care centers. We investigated whether minority health populations (MHPs) have equal access to CART19 and whether their outcomes are similar to those of non-MHPs. METHODS: We analyzed the prevalence and clinical outcomes of patients treated with commercial CART19 at two geographically and socioeconomically different institutions: the Abramson Cancer Center (ACC, Philadelphia, Pennsylvania) and the Knight Cancer Institute (KCI, Portland, Oregon). RESULTS: In the ACC catchment area, 8956 patients were diagnosed with NHL between 2015 and 2019 (latest available data from the state registry), including 17.9% MHPs. In the ACC, between 2018 and 2022 (CART became available in 2018), 1492 patients with LBCL were treated, and 194 received CART19. The proportion of MHPs was 15.7% for the entire LBCL cohort but only 6.7% for the CART19 cohort. During the same time, in the KCI catchment area, 4568 patients were diagnosed with NHL, including 4.2% MHPs. In the KCI, 396 patients with LBCL were treated, and 47 received CART19. The proportion of MHPs was 6.6% for the entire LBCL cohort and 4.2% for the CART19 cohort. The 3-month response, survival, and toxicities after CART19 infusion showed similar results, although the number of patients who were treated was limited. CONCLUSIONS: This study shows that the access of MHPs to tertiary centers for LBCL care was preserved but appeared reduced for commercial CART19 immunotherapy. Although clinical outcomes of MHPs seemed similar to those of non-MHPs, the small sample size precludes drawing firm conclusions. Further studies are needed. (Funded by the Laffey McHugh Foundation and others.).


Asunto(s)
Inmunoterapia Adoptiva , Humanos , Masculino , Femenino , Persona de Mediana Edad , Inmunoterapia Adoptiva/efectos adversos , Anciano , Adulto , Grupos Minoritarios/estadística & datos numéricos , Receptores Quiméricos de Antígenos/inmunología , Antígenos CD19/inmunología , Antígenos CD19/uso terapéutico
8.
J Hematol Oncol ; 17(1): 19, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644469

RESUMEN

Bendamustine has been retrospectively shown to be an effective and safe lymphodepletion regimen prior to the anti-CD19 chimeric antigen receptor T cell (CART) products tisagenlecleucel and axicabtagene ciloleucel, as well as the anti-BCMA CART products idecabtagene vicleucel and ciltacabtagene autoleucel. However, bendamustine as lymphodepletion prior to lisocabtagene maraleucel (liso-cel), a 4-1BB co-stimulated, fixed CD4:CD8 ratio anti-CD19 CART product, has not been described yet. Thus, we studied a cohort of sequentially-treated patients with large B-cell lymphomas who received bendamustine lymphodepletion before liso-cel at the University of Pennsylvania between 5/2021 and 12/2023 (n = 31). Patients were evaluated for toxicities and responses. Of note, 7 patients (22.6%) would have dnot met the inclusion criteria for the registrational liso-cel clinical trials, mostly due to older age. Overall and complete response rates were 76.9% and 73.1%, respectively. At a median follow-up of 6.3 months, the 6-month progression-free and overall survival were 59.9% and 91.1%, respectively. Rates of cytokine-release syndrome (CRS) and neurotoxicity (ICANS) of any grade were 9.7% and 9.7%, respectively, with no grade ≥ 3 events. No infections were reported during the first 30 days following liso-cel infusion. Neutropenia ≥ grade 3 was observed in 29.0% of patients; thrombocytopenia ≥ grade 3 occurred in 9.7%. In conclusion, bendamustine lymphodepletion before liso-cel appears to be a strategy that can drive tumor responses while ensuring a mild toxicity profile.


Asunto(s)
Clorhidrato de Bendamustina , Inmunoterapia Adoptiva , Humanos , Clorhidrato de Bendamustina/uso terapéutico , Persona de Mediana Edad , Masculino , Femenino , Anciano , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/efectos adversos , Estudios Retrospectivos , Adulto , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Antineoplásicos Alquilantes/uso terapéutico , Antineoplásicos Alquilantes/efectos adversos , Productos Biológicos/uso terapéutico , Productos Biológicos/efectos adversos , Anciano de 80 o más Años , Resultado del Tratamiento
9.
bioRxiv ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38659938

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy targeting CD19 elicits remarkable clinical efficacy in B-cell malignancies, but many patients relapse due to failed expansion and/or progressive loss of CAR-T cells. We recently reported a strategy to potently restimulate CAR-T cells in vivo, enhancing their functionality by administration of a vaccine-like stimulus comprised of surrogate peptide ligands for a CAR linked to a lymph node-targeting amphiphilic PEG-lipid (termed CAR-T-vax). Here, we demonstrate a general strategy to generate and optimize peptide mimotopes enabling CAR-T-vax generation for any CAR. Using the clinical CD19 CAR FMC63 as a test case, we employed yeast surface display to identify peptide binders to soluble IgG versions of FMC63, which were subsequently affinity matured by directed evolution. CAR-T vaccines using these optimized mimotopes triggered marked expansion of both murine CD19 CAR-T cells in a syngeneic model and human CAR-T cells in a humanized mouse model of B cell acute lymphoblastic leukemia (B-ALL), and enhanced control of leukemia progression. This approach thus enables vaccine boosting to be applied to any clinically-relevant CAR-T cell product.

10.
Cytotherapy ; 26(5): 506-511, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38483365

RESUMEN

BACKGROUND AIMS: The successful development of CD19-targeted chimeric antigen receptor (CAR) T-cell therapies has led to an exponential increase in the number of patients recieving treatment and the advancement of novel CAR T products. Therefore, there is a strong need to develop streamlined platforms that allow rapid, cost-effective, and accurate measurement of the key characteristics of CAR T cells during manufacturing (i.e., cell number, cell size, viability, and basic phenotype). METHODS: In this study, we compared the novel benchtop cell analyzer Moxi GO II (ORFLO Technologies), which enables simultaneous evaluation of all the aforementioned parameters, with current gold standards in the field: the Multisizer Coulter Counter (cell counter) and the BD LSRFortessa (flow cytometer). RESULTS: Our results demonstrated that the Moxi GO II can accurately measure cell number and cell size (i.e., cell volume) while simultaneously assessing simple two-color flow cytometry parameters, such as CAR T-cell viability and CD4 or CAR expression. CONCLUSIONS: These measurements are comparable with those of gold standard instruments, demonstrating that the Moxi GO II is a promising platform for quickly monitoring CAR T-cell growth and phenotype in research-grade and clinical samples.


Asunto(s)
Supervivencia Celular , Citometría de Flujo , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Linfocitos T , Humanos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Citometría de Flujo/métodos , Inmunoterapia Adoptiva/métodos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Antígenos CD19/inmunología , Antígenos CD19/metabolismo , Fenotipo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Inmunofenotipificación/métodos , Tamaño de la Célula
11.
Transplant Cell Ther ; 30(7): 726.e1-726.e8, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38494076

RESUMEN

Brexucabtagene autoleucel (brexu-cel) is an autologous CD19-directed chimeric antigen receptor (CAR) T-cell therapy approved for treatment of relapsed/refractory mantle cell lymphoma (MCL). During a fludarabine shortage, we used bendamustine as an alternative to standard cyclophosphamide/fludarabine (cy/flu) lymphodepletion (LD) prior to brexu-cel. We assessed MCL patient outcomes as well as CAR T-cell expansion and persistence after brexu-cel following bendamustine or cy/flu LD at our center. This was a retrospective single institution study that utilized prospectively banked blood and tissue samples. Clinical efficacy was assessed by 2014 Lugano guidelines. CAR T-cell expansion and persistence in peripheral blood were assessed on day 7 and at ≥month 6 for patients with available samples. Seventeen patients received bendamustine and 5 received cy/flu. For the bendamustine cohort, 14 (82%) received bridging therapy and 4 (24%) had CNS involvement. Fifteen patients (88%) developed CRS with 4 (24%) ≥grade 3 events. Six (35%) patients developed ICANS with 4 (24%) events ≥grade 3. No patient had ≥grade 3 cytopenias at day 90. Best objective (BOR) and complete response (CRR) rates were 82% and 65%, respectively. At 24.5 months median follow-up, 12-month progression-free survival (PFS) was 45%, 24-month PFS was 25%, and median duration of response was 19 months. Median OS was not reached. BOR was 25% (1/4) for patients with CNS involvement. CAR transgene expansion after bendamustine LD was observed on day 7 in all (4/4) patients tested and persisted at ≥6 months (2/2), regardless of response. Bendamustine LD before brexu-cel for MCL is feasible and safe with a lower frequency and shorter duration of cytopenias than reported for cy/flu. Both CAR T-cell expansion and persistence were observed after bendamustine LD. Outcomes appear comparable to the real world outcomes reported with cy/flu LD.


Asunto(s)
Clorhidrato de Bendamustina , Inmunoterapia Adoptiva , Linfoma de Células del Manto , Humanos , Clorhidrato de Bendamustina/uso terapéutico , Clorhidrato de Bendamustina/administración & dosificación , Linfoma de Células del Manto/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Inmunoterapia Adoptiva/métodos , Vidarabina/análogos & derivados , Vidarabina/uso terapéutico , Vidarabina/administración & dosificación , Adulto , Antineoplásicos Alquilantes/uso terapéutico , Antineoplásicos Alquilantes/administración & dosificación , Antígenos CD19/inmunología , Resultado del Tratamiento
12.
Nat Med ; 30(4): 984-989, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38266761

RESUMEN

We report a T cell lymphoma (TCL) occurring 3 months after anti-CD19 chimeric antigen receptor (CAR) T cell immunotherapy for non-Hodgkin B cell lymphoma. The TCL was diagnosed from a thoracic lymph node upon surgery for lung cancer. The TCL exhibited CD8+ cytotoxic phenotype and a JAK3 variant, while the CAR transgene was very low. The T cell clone was identified at low levels in the blood before CAR T infusion and in lung cancer. To assess the overall risk of secondary primary malignancy after commercial CAR T (CD19, BCMA), we analyzed 449 patients treated at the University of Pennsylvania. At a median follow-up of 10.3 months, 16 patients (3.6%) had a secondary primary malignancy. The median onset time was 26.4 and 9.7 months for solid and hematological malignancies, respectively. The projected 5-year cumulative incidence is 15.2% for solid and 2.3% for hematological malignancies. Overall, one case of TCL was observed, suggesting a low risk of TCL after CAR T.


Asunto(s)
Neoplasias Hematológicas , Neoplasias Pulmonares , Linfoma de Células B , Linfoma de Células T , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/efectos adversos , Receptores Quiméricos de Antígenos/genética , Receptores de Antígenos de Linfocitos T/genética , Antígenos CD19
13.
Transplant Cell Ther ; 30(2): 171-186, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37866783

RESUMEN

Chimeric antigen receptor T cell (CAR-T) immunotherapy has revolutionized the treatment of relapsed and refractory B cell-derived hematologic malignancies. Currently, there are 6 Food and Drug Administration-approved commercial CAR-T products that target antigens exclusively expressed on malignant B cells or plasma cells. However, concurrent advancement for patients with rarer and more aggressive T cell-derived hematologic malignancies have not yet been achieved. CAR-T immunotherapies are uniquely limited by challenges related to CAR-T product manufacturing and intrinsic tumor biology. In this review tailored for practicing clinician-scientists, we discuss the major barriers of CAR-T implementation against T cell-derived neoplasms and highlight specific scientific advancements poised to circumvent these obstacles. We summarize salient early-stage clinical trials implementing novel CAR-T immunotherapies specifically for patients with relapsed and/or refractory T cell neoplasms. Finally, we highlight novel manufacturing and treatment strategies that are poised to have a meaningful future clinical impact.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Receptores Quiméricos de Antígenos , Estados Unidos , Humanos , Linfocitos T , Receptores de Antígenos de Linfocitos T/genética , Inmunoterapia/efectos adversos , Neoplasias Hematológicas/terapia
14.
Blood ; 143(2): 139-151, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37616575

RESUMEN

ABSTRACT: Patients with multiple myeloma (MM) treated with B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T cells usually relapse with BCMA+ disease, indicative of CAR T-cell suppression. CD200 is an immune checkpoint that is overexpressed on aberrant plasma cells (aPCs) in MM and is an independent negative prognostic factor for survival. However, CD200 is not present on MM cell lines, a potential limitation of current preclinical models. We engineered MM cell lines to express CD200 at levels equivalent to those found on aPCs in MM and show that these are sufficient to suppress clinical-stage CAR T-cells targeting BCMA or the Tn glycoform of mucin 1 (TnMUC1), costimulated by 4-1BB and CD2, respectively. To prevent CD200-mediated suppression of CAR T cells, we compared CRISPR-Cas9-mediated knockout of the CD200 receptor (CD200RKO), to coexpression of versions of the CD200 receptor that were nonsignaling, that is, dominant negative (CD200RDN), or that leveraged the CD200 signal to provide CD28 costimulation (CD200R-CD28 switch). We found that the CD200R-CD28 switch potently enhanced the polyfunctionality of CAR T cells, and improved cytotoxicity, proliferative capacity, CAR T-cell metabolism, and performance in a chronic antigen exposure assay. CD200RDN provided modest benefits, but surprisingly, the CD200RKO was detrimental to CAR T-cell activity, adversely affecting CAR T-cell metabolism. These patterns held up in murine xenograft models of plasmacytoma, and disseminated bone marrow predominant disease. Our findings underscore the importance of CD200-mediated immune suppression in CAR T-cell therapy of MM, and highlight a promising approach to enhance such therapies by leveraging CD200 expression on aPCs to provide costimulation via a CD200R-CD28 switch.


Asunto(s)
Inmunoterapia Adoptiva , Mieloma Múltiple , Humanos , Ratones , Animales , Mieloma Múltiple/metabolismo , Antígenos CD28/metabolismo , Linfocitos T , Antígeno de Maduración de Linfocitos B/metabolismo , Recurrencia Local de Neoplasia/metabolismo
15.
Blood Adv ; 8(3): 653-666, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38113468

RESUMEN

ABSTRACT: Lymphodepletion (LD) is an integral component of chimeric antigen receptor T-cell (CART) immunotherapies. In this study, we compared the safety and efficacy of bendamustine (Benda) to standard fludarabine/cyclophosphamide (Flu/Cy) LD before CD19-directed, CD28-costimulated CART axicabtagene ciloleucel (axi-cel) for patients with large B-cell lymphoma (LBCL) and follicular lymphoma (FL). We analyzed 59 patients diagnosed with LBCL (n = 48) and FL (n = 11) consecutively treated with axi-cel at the University of Pennsylvania. We also analyzed serum samples for cytokine levels and metabolomic changes before and after LD. Flu/Cy and Benda demonstrated similar efficacy, with complete remission rates of 51.4% and 50.0% (P = .981), respectively, and similar progression-free and overall survivals. Any-grade cytokine-release syndrome occurred in 91.9% of patients receiving Flu/Cy vs 72.7% of patients receiving Benda (P = .048); any-grade neurotoxicity after Flu/Cy occurred in 45.9% of patients and after Benda in 18.2% of patients (P = .031). In addition, Flu/Cy was associated with a higher incidence of grade ≥3 neutropenia (100% vs 54.5%; P < .001), infections (78.4% vs 27.3%; P < .001), and neutropenic fever (78.4% vs 13.6%; P < .001). These results were confirmed both in patients with LBCL and those with FL. Mechanistically, patients with Flu/Cy had a greater increase in inflammatory cytokines associated with neurotoxicity and reduced levels of metabolites critical for redox balance and biosynthesis. This study suggests that Benda LD may be a safe alternative to Flu/Cy for CD28-based CART CD19-directed immunotherapy with similar efficacy and reduced toxicities. Benda is associated with reduced levels of inflammatory cytokines and increased anabolic metabolites.


Asunto(s)
Productos Biológicos , Citocinas , Linfoma Folicular , Humanos , Clorhidrato de Bendamustina/efectos adversos , Antígenos CD28 , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Ciclofosfamida
16.
Mol Cancer ; 22(1): 200, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38066564

RESUMEN

BACKGROUND: Commercial anti-CD19 chimeric antigen receptor T-cell therapies (CART19) are efficacious against advanced B-cell non-Hodgkin lymphoma (NHL); however, most patients ultimately relapse. Several mechanisms contribute to this failure, including CD19-negative escape and CAR T dysfunction. All four commercial CART19 products utilize the FMC63 single-chain variable fragment (scFv) specific to a CD19 membrane-distal epitope and characterized by slow association (on) and dissociation (off) rates. We hypothesized that a novel anti-CD19 scFv that engages an alternative CD19 membrane-proximal epitope independent of FMC63 and that is characterized by faster on- and off-rates could mitigate CART19 failure and improve clinical efficacy. METHODS: We developed an autologous CART19 product with 4-1BB co-stimulation using a novel humanized chicken antibody (h1218). This antibody is specific to a membrane-proximal CD19 epitope and harbors faster on/off rates compared to FMC63. We tested h1218-CART19 in vitro and in vivo using FMC63-CART19-resistant models. We conducted a first-in-human multi-center phase I clinical trial to test AT101 (clinical-grade h1218-CART19) in patients with relapsed or refractory (r/r) NHL. RESULTS: Preclinically, h1218- but not FMC63-CART19 were able to effectively eradicate lymphomas expressing CD19 point mutations (L174V and R163L) or co-expressing FMC63-CAR19 as found in patients relapsing after FMC63-CART19. Furthermore, h1218-CART19 exhibited enhanced killing of B-cell malignancies in vitro and in vivo compared with FMC63-CART19. Mechanistically, we found that h1218-CART19 had reduced activation-induced cell death (AICD) and enhanced expansion compared to FMC63-CART19 owing to faster on- and off-rates. Based on these preclinical results, we performed a phase I dose-escalation trial, testing three dose levels (DL) of AT101 (the GMP version of h1218) using a 3 + 3 design. In 12 treated patients (7 DLBCL, 3 FL, 1 MCL, and 1 MZL), AT101 showed a promising safety profile with 8.3% grade 3 CRS (n = 1) and 8.3% grade 4 ICANS (n = 1). In the whole cohort, the overall response rate was 91.7%, with a complete response rate of 75.0%, which improved to 100% in DL-2 and -3. AT101 expansion correlates with CR and B-cell aplasia. CONCLUSIONS: We developed a novel, safe, and potent CART19 product that recognizes a membrane-proximal domain of CD19 with fast on- and off-rates and showed significant efficacy and promising safety in patients with relapsed B-cell NHL. TRIAL REGISTRATION: NCT05338931; Date: 2022-04-01.


Asunto(s)
Linfoma no Hodgkin , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos , Humanos , Anticuerpos , Antígenos CD19 , Epítopos/metabolismo , Inmunoterapia Adoptiva/efectos adversos , Linfoma no Hodgkin/terapia , Linfoma no Hodgkin/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Receptores de Antígenos de Linfocitos T/antagonistas & inhibidores
17.
Cancer Cell ; 41(12): 2016-2018, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38086334

RESUMEN

Chimeric antigen receptor (CAR) T cell immunotherapy in solid cancer is severely limited by the absence of ideal targets. In this issue of Cancer Cell, Bergaggio et al. find that anaplastic lymphoma kinase (ALK) inhibitors can enhance the function of ALK-specific CAR T cells against neuroblastoma by increasing target density in cancer cells.


Asunto(s)
Neuroblastoma , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Neuroblastoma/patología , Inmunoterapia , Inhibidores de Proteínas Quinasas , Proteínas Tirosina Quinasas Receptoras/genética , Linfocitos T , Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T/genética
18.
Nat Rev Drug Discov ; 22(12): 976-995, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37907724

RESUMEN

Chimeric antigen receptor (CAR)-T cells have recently emerged as a powerful therapeutic approach for the treatment of patients with chemotherapy-refractory or relapsed blood cancers, including acute lymphoblastic leukaemia, diffuse large B cell lymphoma, follicular lymphoma, mantle cell lymphoma and multiple myeloma. Nevertheless, resistance to CAR-T cell therapies occurs in most patients. In this Review, we summarize the resistance mechanisms to CAR-T cell immunotherapy by analysing CAR-T cell dysfunction, intrinsic tumour resistance and the immunosuppressive tumour microenvironment. We discuss current research strategies to overcome multiple resistance mechanisms, including optimization of the CAR design, improvement of in vivo T cell function and persistence, modulation of the immunosuppressive tumour microenvironment and synergistic combination strategies.


Asunto(s)
Neoplasias Hematológicas , Receptores Quiméricos de Antígenos , Humanos , Recurrencia Local de Neoplasia/etiología , Linfocitos T , Neoplasias Hematológicas/terapia , Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T , Microambiente Tumoral
19.
Nat Commun ; 14(1): 7767, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012187

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy is effective in treating B cell malignancies, but factors influencing the persistence of functional CAR+ T cells, such as product composition, patients' lymphodepletion, and immune reconstitution, are not well understood. To shed light on this issue, here we conduct a single-cell multi-omics analysis of transcriptional, clonal, and phenotypic profiles from pre- to 1-month post-infusion of CAR+ and CAR- T cells from patients from a CARTELL study (ACTRN12617001579381) who received a donor-derived 4-1BB CAR product targeting CD19. Following infusion, CAR+ T cells and CAR- T cells shows similar differentiation profiles with clonally expanded populations across heterogeneous phenotypes, demonstrating clonal lineages and phenotypic plasticity. We validate these findings in 31 patients with large B cell lymphoma treated with CD19 CAR T therapy. For these patients, we identify using longitudinal mass-cytometry data an association between NK-like subsets and clinical outcomes at 6 months with both CAR+ and CAR- T cells. These results suggest that non-CAR-derived signals can provide information about patients' immune recovery and be used as correlate of clinically relevant parameters.


Asunto(s)
Linfoma de Células B Grandes Difuso , Receptores de Antígenos de Linfocitos T , Humanos , Linfocitos B , Inmunoterapia Adoptiva/métodos , Linfoma de Células B Grandes Difuso/patología , Linfocitos T
20.
Blood ; 142(20): 1724-1739, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37683180

RESUMEN

Aberrant skipping of coding exons in CD19 and CD22 compromises the response to immunotherapy in B-cell malignancies. Here, we showed that the MS4A1 gene encoding human CD20 also produces several messenger RNA (mRNA) isoforms with distinct 5' untranslated regions. Four variants (V1-4) were detected using RNA sequencing (RNA-seq) at distinct stages of normal B-cell differentiation and B-lymphoid malignancies, with V1 and V3 being the most abundant. During B-cell activation and Epstein-Barr virus infection, redirection of splicing from V1 to V3 coincided with increased CD20 positivity. Similarly, in diffuse large B-cell lymphoma, only V3, but not V1, correlated with CD20 protein levels, suggesting that V1 might be translation-deficient. Indeed, the longer V1 isoform contained upstream open reading frames and a stem-loop structure, which cooperatively inhibited polysome recruitment. By modulating CD20 isoforms with splice-switching morpholino oligomers, we enhanced CD20 expression and anti-CD20 antibody rituximab-mediated cytotoxicity in a panel of B-cell lines. Furthermore, reconstitution of CD20-knockout cells with V3 mRNA led to the recovery of CD20 positivity, whereas V1-reconstituted cells had undetectable levels of CD20 protein. Surprisingly, in vitro CD20-directed chimeric antigen receptor T cells were able to kill both V3- and V1-expressing cells, but the bispecific T-cell engager mosunetuzumab was only effective against V3-expressing cells. To determine whether CD20 splicing is involved in immunotherapy resistance, we performed RNA-seq on 4 postmosunetuzumab follicular lymphoma relapses and discovered that in 2 of them, the downregulation of CD20 was accompanied by a V3-to-V1 shift. Thus, splicing-mediated mechanisms of epitope loss extend to CD20-directed immunotherapies.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias , Humanos , Empalme Alternativo , ARN Mensajero/genética , Regiones no Traducidas 5' , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Antígenos CD20/genética , Isoformas de Proteínas/genética , Inmunoterapia , Biosíntesis de Proteínas , Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...