RESUMEN
In this study, we report a tetragonal perovskite structure of SrIrO3 (P4/mmm, a = 3.9362(9) Å, c = 7.880(3) Å) synthesized at 6 GPa and 1400 °C, employing the ambient pressure monoclinic SrIrO3 with distorted 6H structure as a precursor. The crystal structure of tetragonal SrIrO3 was evaluated on the basis of single-crystal and powder X-ray diffraction. A cubic indexing was observed, which was attributed to overlooked superlattice reflections. Weak fractional peaks in the H and K dimensions suggest possible structure modulation by oxygen defects. Magnetization study reveals weak paramagnetic behavior down to 2 K, indicative of the interplay between spin-orbit coupling, electron correlations, and the crystal electric field. Additionally, measurements of electrical resistivity display metallic behavior with an upturn at about 54 K, which is ascribed to weak electron localization and possible structural defects.
RESUMEN
Non-volatile phase-change memory devices utilize local heating to toggle between crystalline and amorphous states with distinct electrical properties. Expanding on this kind of switching to two topologically distinct phases requires controlled non-volatile switching between two crystalline phases with distinct symmetries. Here, we report the observation of reversible and non-volatile switching between two stable and closely related crystal structures, with remarkably distinct electronic structures, in the near-room-temperature van der Waals ferromagnet Fe5-δGeTe2. We show that the switching is enabled by the ordering and disordering of Fe site vacancies that results in distinct crystalline symmetries of the two phases, which can be controlled by a thermal annealing and quenching method. The two phases are distinguished by the presence of topological nodal lines due to the preserved global inversion symmetry in the site-disordered phase, flat bands resulting from quantum destructive interference on a bipartite lattice, and broken inversion symmetry in the site-ordered phase.
RESUMEN
During a band-gap-tuned semimetal-to-semiconductor transition, Coulomb attraction between electrons and holes can cause spontaneously formed excitons near the zero-band-gap point, or the Lifshitz transition point. This has become an important route to realize bulk excitonic insulators - an insulating ground state distinct from single-particle band insulators. How this route manifests from weak to strong coupling is not clear. In this work, using angle-resolved photoemission spectroscopy (ARPES) and high-resolution synchrotron x-ray diffraction (XRD), we investigate the broken symmetry state across the semimetal-to-semiconductor transition in a leading bulk excitonic insulator candidate system Ta2Ni(Se,S)5. A broken symmetry phase is found to be continuously suppressed from the semimetal side to the semiconductor side, contradicting the anticipated maximal excitonic instability around the Lifshitz transition. Bolstered by first-principles and model calculations, we find strong interband electron-phonon coupling to play a crucial role in the enhanced symmetry breaking on the semimetal side of the phase diagram. Our results not only provide insight into the longstanding debate of the nature of intertwined orders in Ta2NiSe5, but also establish a basis for exploring band-gap-tuned structural and electronic instabilities in strongly coupled systems.
RESUMEN
Hysteresis underlies a large number of phase transitions in solids, giving rise to exotic metastable states that are otherwise inaccessible. Here, we report an unconventional hysteretic transition in a quasi-2D material, EuTe_{4}. By combining transport, photoemission, diffraction, and x-ray absorption measurements, we observe that the hysteresis loop has a temperature width of more than 400 K, setting a record among crystalline solids. The transition has an origin distinct from known mechanisms, lying entirely within the incommensurate charge density wave (CDW) phase of EuTe_{4} with no change in the CDW modulation periodicity. We interpret the hysteresis as an unusual switching of the relative CDW phases in different layers, a phenomenon unique to quasi-2D compounds that is not present in either purely 2D or strongly coupled 3D systems. Our findings challenge the established theories on metastable states in density wave systems, pushing the boundary of understanding hysteretic transitions in a broken-symmetry state.
RESUMEN
Chirality is ubiquitous in nature, and populations of opposite chiralities are surprisingly asymmetric at fundamental levels1,2. Examples range from parity violation in the subatomic weak force to homochirality in biomolecules. The ability to achieve chirality-selective synthesis (chiral induction) is of great importance in stereochemistry, molecular biology and pharmacology2. In condensed matter physics, a crystalline electronic system is geometrically chiral when it lacks mirror planes, space-inversion centres or rotoinversion axes1. Typically, geometrical chirality is predefined by the chiral lattice structure of a material, which is fixed on formation of the crystal. By contrast, in materials with gyrotropic order3-6, electrons spontaneously organize themselves to exhibit macroscopic chirality in an originally achiral lattice. Although such order-which has been proposed as the quantum analogue of cholesteric liquid crystals-has attracted considerable interest3-15, no clear observation or manipulation of gyrotropic order has been achieved so far. Here we report the realization of optical chiral induction and the observation of a gyrotropically ordered phase in the transition-metal dichalcogenide semimetal 1T-TiSe2. We show that shining mid-infrared circularly polarized light on 1T-TiSe2 while cooling it below the critical temperature leads to the preferential formation of one chiral domain. The chirality of this state is confirmed by the measurement of an out-of-plane circular photogalvanic current, the direction of which depends on the optical induction. Although the role of domain walls requires further investigation with local probes, the methodology demonstrated here can be applied to realize and control chiral electronic phases in other quantum materials4,16.
RESUMEN
The intercalation of alkali ions into layered materials has played an essential role in battery technology since the development of the first lithium-ion electrodes. Coulomb repulsion between the intercalants leads to ordering of the intercalant sublattice, which hinders ionic diffusion and impacts battery performance. While conventional diffraction can identify the long-range order that can occur at discrete intercalant concentrations during the charging cycle, it cannot determine short-range order at other concentrations that also disrupt ionic mobility. In this Article, we show that the use of real-space transforms of single-crystal diffuse scattering, measured with high-energy synchrotron X-rays, allows a model-independent measurement of the temperature dependence of the length scale of ionic correlations along each of the crystallographic axes in sodium-intercalated V2O5. The techniques described here provide a new way of probing the evolution of structural ordering in crystalline materials.
RESUMEN
Superlattices of epitaxially connected nanocrystals (NCs) are model systems to study electronic and optical properties of NC arrays. Using elemental analysis and structural analysis by in situ X-ray fluorescence and grazing-incidence small-angle scattering, respectively, we show that epitaxial superlattices of PbSe NCs keep their structural integrity up to temperatures of 300 °C; an ideal starting point to assess the effect of gentle thermal annealing on the superlattice properties. We find that annealing such superlattices between 75 and 150 °C induces a marked red shift of the NC band-edge transition. In fact, the post-annealing band-edge reflects theoretical predictions on the impact of charge carrier delocalization in these epitaxial superlattices. In addition, we observe a pronounced enhancement of the charge carrier mobility and a reduction of the hopping activation energy after mild annealing. While the superstructure remains intact at these temperatures, structural defect studies through X-ray diffraction indicate that annealing markedly decreases the density of point defects and edge dislocations. This indicates that the connections between NCs in as-synthesized superlattices still form a major source of grain boundaries and defects, which prevent carrier delocalization over multiple NCs and hamper NC-to-NC transport. Overcoming the limitations imposed by interfacial defects is therefore an essential next step in the development of high-quality optoelectronic devices based on NC solids.
RESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
With the discovery of charge-density waves (CDWs) in most members of the cuprate high-temperature superconductors, the interplay between superconductivity and CDWs has become a key point in the debate on the origin of high-temperature superconductivity. Some experiments in cuprates point toward a CDW state competing with superconductivity, but others raise the possibility of a CDW-superconductivity intertwined order or more elusive pair-density waves (PDWs). Here, we have used proton irradiation to induce disorder in crystals of [Formula: see text] and observed a striking 50% increase of [Formula: see text], accompanied by a suppression of the CDWs. This is in sharp contrast with the behavior expected of a d-wave superconductor, for which both magnetic and nonmagnetic defects should suppress [Formula: see text] Our results thus make an unambiguous case for the strong detrimental effect of the CDW on bulk superconductivity in [Formula: see text] Using tunnel diode oscillator (TDO) measurements, we find indications for potential dynamic layer decoupling in a PDW phase. Our results establish irradiation-induced disorder as a particularly relevant tuning parameter for the many families of superconductors with coexisting density waves, which we demonstrate on superconductors such as the dichalcogenides and [Formula: see text].
RESUMEN
The breakdown of [Formula: see text] antiferromagnetism in the limit of strong disorder is studied in Sr3(Ir1-x Mn x )2O7. Upon Mn-substitution, antiferromagnetic ordering of the Ir cations becomes increasingly two-dimensional, resulting in the complete suppression of long-range Ir magnetic order above [Formula: see text]. Long-range antiferromagnetism however persists on the Mn sites to higher Mn concentrations (x > 0.25) and is necessarily mediated via a random network of majority Ir sites. Our data suggest a shift in the Mn valence from Mn4+ to Mn3+ at intermediate doping levels, which in turn generates nonmagnetic Ir5+ sites and suppresses long-range order within the Ir network. The collapse of long-range [Formula: see text] antiferromagnetism and the survival of percolating antiferromagnetic order on Mn-sites demonstrates a complex 3d-5d exchange process that surprisingly enables minority Mn spins to order far below the conventional percolation threshold for a bilayer square lattice.
RESUMEN
Ferroquadrupole order associated with local [Formula: see text] atomic orbitals of rare-earth ions is a realization of electronic nematic order. However, there are relatively few examples of intermetallic materials which exhibit continuous ferroquadrupole phase transitions, motivating the search for additional materials that fall into this category. Furthermore, it is not clear a priori whether experimental approaches based on transport measurements which have been successfully used to probe the nematic susceptibility in materials such as the Fe-based superconductors will be as effective in the case of [Formula: see text] intermetallic materials, for which the important electronic degrees of freedom are local rather than itinerant and are consequently less strongly coupled to the charge-carrying quasiparticles near the Fermi energy. In the present work, we demonstrate that the intermetallic compound [Formula: see text] exhibits a tetragonal-to-orthorhombic phase transition consistent with ferroquadrupole order of the Yb ions and go on to show that elastoresistivity measurements can indeed provide a clear window on the diverging nematic susceptibility in this system. This material provides an arena in which to study the causes and consequences of electronic nematicity.
Asunto(s)
Germanio/química , Rubidio/química , Superconductividad , Iterbio/químicaRESUMEN
The duality between the localized and itinerant nature of magnetism in 5f-electron systems has been a long-standing puzzle. Here, we report inelastic neutron scattering measurements, which reveal both local and itinerant aspects of magnetism in a single-crystalline system of UPt_{2}Si_{2}. In the antiferromagnetic state, we observe a broad continuum of diffuse magnetic scattering with a resonancelike gap of ≈7 meV and the surprising absence of coherent spin waves, suggestive of itinerant magnetism. While the gap closes above the Néel temperature, strong dynamic spin correlations persist to a high temperature. Nevertheless, the size and temperature dependence of the total magnetic spectral weight can be well described by a local moment with J=4. Furthermore, polarized neutron measurements reveal that the magnetic fluctuations are mostly transverse, with little or none of the longitudinal component expected for itinerant moments. These results suggest that a dual description of local and itinerant magnetism is required to understand UPt_{2}Si_{2} and, by extension, other 5f systems, in general.
RESUMEN
Materials that exhibit both strong spin-orbit coupling and electron correlation effects are predicted to host numerous new electronic states. One prominent example is the Jeff = 1/2 Mott state in Sr2IrO4, where introducing carriers is predicted to manifest high temperature superconductivity analogous to the S = 1/2 Mott state of La2CuO4. While bulk superconductivity currently remains elusive, anomalous quasiparticle behaviors paralleling those in the cuprates such as pseudogap formation and the formation of a d-wave gap are observed upon electron-doping Sr2IrO4. Here we establish a magnetic parallel between electron-doped Sr2IrO4 and hole-doped La2CuO4 by unveiling a spin density wave state in electron-doped Sr2IrO4. Our magnetic resonant X-ray scattering data reveal the presence of an incommensurate magnetic state reminiscent of the diagonal spin density wave state observed in the monolayer cuprate (La1-xSr x )2CuO4. This link supports the conjecture that the quenched Mott phases in electron-doped Sr2IrO4 and hole-doped La2CuO4 support common competing electronic phases.
RESUMEN
Long carrier lifetime is what makes hybrid organic-inorganic perovskites high-performance photovoltaic materials. Several microscopic mechanisms behind the unusually long carrier lifetime have been proposed, such as formation of large polarons, Rashba effect, ferroelectric domains, and photon recycling. Here, we show that the screening of band-edge charge carriers by rotation of organic cation molecules can be a major contribution to the prolonged carrier lifetime. Our results reveal that the band-edge carrier lifetime increases when the system enters from a phase with lower rotational entropy to another phase with higher entropy. These results imply that the recombination of the photoexcited electrons and holes is suppressed by the screening, leading to the formation of polarons and thereby extending the lifetime. Thus, searching for organic-inorganic perovskites with high rotational entropy over a wide range of temperature may be a key to achieve superior solar cell performance.
Asunto(s)
Compuestos de Calcio/química , Yoduros/química , Metales Pesados/química , Óxidos/química , Fotoquímica , Titanio/química , Electrones , Luminiscencia , Neutrones , Energía Solar , Luz Solar , TemperaturaRESUMEN
A new polymorph of the RE2Ru3Ge5 (RE = Pr, Sm, Dy) compounds has been grown as single crystals via an indium flux. These compounds crystallize in tetragonal space group P4/mnc with the Sc2Fe3Si5-type structure, having lattice parameters a = 11.020(2) Å and c = 5.853(1) Å for RE = Pr, a = 10.982(2) Å and c = 5.777(1) Å for RE = Sm, and a = 10.927(2) Å and c = 5.697(1) Å for RE = Dy. These materials exhibit a structural transition at low temperature, which is attributed to an apparent charge density wave (CDW). Both the high-temperature average crystal structure and the low-temperature incommensurately modulated crystal structure (for Sm2Ru3Ge5 as a representative) have been solved. The charge density wave order is manifested by periodic distortions of the one-dimensional zigzag Ge chains. From X-ray diffraction, charge transport (electrical resistivity, Hall effect, magnetoresistance), magnetic measurements, and heat capacity, the ordering temperatures (TCDW) observed in the Pr and Sm analogues are â¼200 and â¼175 K, respectively. The charge transport measurement results indicate an electronic state transition happening simultaneously with the CDW transition. X-ray absorption near-edge spectroscopy (XANES) and electronic band structure results are also reported.
Asunto(s)
Germanio/química , Elementos de la Serie de los Lantanoides/química , Teoría Cuántica , Rutenio/química , Fenómenos ElectromagnéticosRESUMEN
Here we establish the systematic existence of a U(1) degeneracy of all symmetry-allowed Hamiltonians quadratic in the spins on the pyrochlore lattice, at the mean-field level. By extracting the Hamiltonian of Er(2)Ti(2)O(7) from inelastic neutron scattering measurements, we then show that the U(1)-degenerate states of Er(2)Ti(2)O(7) are its classical ground states, and unambiguously show that quantum fluctuations break the degeneracy in a way which is confirmed by experiment. The degree of symmetry protection of the classical U(1) degeneracy in Er(2)Ti(2)O(7) is unprecedented in other materials. As a consequence, our observation of order by disorder is unusually definitive. We provide further verifiable consequences of this phenomenon, and several additional comparisons between theory and experiment.
RESUMEN
We present a pulsed-magnet system that enables x-ray single-crystal diffraction in addition to powder and spectroscopic studies with the magnetic field applied on or close to the scattering plane. The apparatus consists of a single large-bore solenoid, cooled by liquid nitrogen. A second independent closed-cycle cryostat is used for cooling samples near liquid helium temperatures. Pulsed magnetic fields close to ~30 T with a zero-to-peak-field rise time of ~2.9 ms are generated by discharging a 40 kJ capacitor bank into the magnet coil. The unique characteristic of this instrument is the preservation of maximum scattering angle (~23.6°) on the entrance and exit sides of the magnet bore by virtue of a novel double-funnel insert. This instrument will facilitate x-ray diffraction and spectroscopic studies that are impractical, if not impossible, to perform using split-pair and narrow-opening solenoid magnets. Furthermore, it offers a practical solution for preserving optical access in future higher-field pulsed magnets.
RESUMEN
We have developed an application of a one-dimensional micro-strip detector for capturing x-ray diffraction data in pulsed magnetic fields. This detector consists of a large array of 50 µm-wide Si strips with a full-frame read out at 20 kHz. Its use substantially improves data-collection efficiency and quality as compared to point detectors, because diffraction signals are recorded along an arc in reciprocal space in a time-resolved manner. By synchronizing with pulsed fields, the entire field dependence of a two-dimensional swath of reciprocal space may be determined using a small number of field pulses.
RESUMEN
We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (approximately 1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.
RESUMEN
We use Monte Carlo simulations to identify the mechanism that allows for phase transitions in dipolar spin ice to occur and survive for an applied magnetic field H much larger in strength than that of the spin-spin interactions. In the most generic and highest symmetry case, the spins on one out of four sublattices of the pyrochlore decouple from the total local exchange+dipolar+applied field. In the special case where H is aligned perfectly along the [110] crystallographic direction, spin chains perpendicular to H show a transition to q=X long-range order, which proceeds via a one- to three-dimensional crossover. We propose that these transitions are relevant to the origin of specific heat features observed in powder samples of the Dy2Ti2O7 spin ice material for H above 1 Tesla.