Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 297(5): 101288, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34634302

RESUMEN

The human general transcription factor TFIID is composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). In eukaryotic cells, TFIID is thought to nucleate RNA polymerase II (Pol II) preinitiation complex formation on all protein coding gene promoters and thus, be crucial for Pol II transcription. TFIID is composed of three lobes, named A, B, and C. A 5TAF core complex can be assembled in vitro constituting a building block for the further assembly of either lobe A or B in TFIID. Structural studies showed that TAF8 forms a histone fold pair with TAF10 in lobe B and participates in connecting lobe B to lobe C. To better understand the role of TAF8 in TFIID, we have investigated the requirement of the different regions of TAF8 for the in vitro assembly of lobe B and C and the importance of certain TAF8 regions for mouse embryonic stem cell (ESC) viability. We have identified a region of TAF8 distinct from the histone fold domain important for assembling with the 5TAF core complex in lobe B. We also delineated four more regions of TAF8 each individually required for interacting with TAF2 in lobe C. Moreover, CRISPR/Cas9-mediated gene editing indicated that the 5TAF core-interacting TAF8 domain and the proline-rich domain of TAF8 that interacts with TAF2 are both required for mouse embryonic stem cell survival. Thus, our study defines distinct TAF8 regions involved in connecting TFIID lobe B to lobe C that appear crucial for TFIID function and consequent ESC survival.


Asunto(s)
Células Madre Embrionarias de Ratones/metabolismo , Pliegue de Proteína , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Supervivencia Celular , Humanos , Ratones , Dominios Proteicos , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/genética , Factores de Transcripción/química , Factores de Transcripción/genética
2.
Neuron ; 109(11): 1825-1835.e5, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33887199

RESUMEN

Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disease characterized by the presence of intranuclear inclusions of unknown origin. NIID is caused by an expansion of GGC repeats in the 5' UTR of the NOTCH2NLC (N2C) gene. We found that these repeats are embedded in a small upstream open reading frame (uORF) (uN2C), resulting in their translation into a polyglycine-containing protein, uN2CpolyG. This protein accumulates in intranuclear inclusions in cell and mouse models and in tissue samples of individuals with NIID. Furthermore, expression of uN2CpolyG in mice leads to locomotor alterations, neuronal cell loss, and premature death of the animals. These results suggest that translation of expanded GGC repeats into a novel and pathogenic polyglycine-containing protein underlies the presence of intranuclear inclusions and neurodegeneration in NIID.


Asunto(s)
Enfermedades Neurodegenerativas/genética , Péptidos/toxicidad , Expansión de Repetición de Trinucleótido , Animales , Muerte Celular , Núcleo Celular/metabolismo , Núcleo Celular/patología , Células Cultivadas , Células HEK293 , Humanos , Cuerpos de Inclusión Intranucleares/genética , Cuerpos de Inclusión Intranucleares/metabolismo , Cuerpos de Inclusión Intranucleares/patología , Locomoción , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Sistemas de Lectura Abierta , Péptidos/genética , Péptidos/metabolismo
3.
EMBO J ; 39(23): e104369, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33124732

RESUMEN

Organelles are physically connected in membrane contact sites. The endoplasmic reticulum possesses three major receptors, VAP-A, VAP-B, and MOSPD2, which interact with proteins at the surface of other organelles to build contacts. VAP-A, VAP-B, and MOSPD2 contain an MSP domain, which binds a motif named FFAT (two phenylalanines in an acidic tract). In this study, we identified a non-conventional FFAT motif where a conserved acidic residue is replaced by a serine/threonine. We show that phosphorylation of this serine/threonine is critical for non-conventional FFAT motifs (named Phospho-FFAT) to be recognized by the MSP domain. Moreover, structural analyses of the MSP domain alone or in complex with conventional and Phospho-FFAT peptides revealed new mechanisms of interaction. Based on these new insights, we produced a novel prediction algorithm, which expands the repertoire of candidate proteins with a Phospho-FFAT that are able to create membrane contact sites. Using a prototypical tethering complex made by STARD3 and VAP, we showed that phosphorylation is instrumental for the formation of ER-endosome contacts, and their sterol transfer function. This study reveals that phosphorylation acts as a general switch for inter-organelle contacts.


Asunto(s)
Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Receptores de Quimiocina/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Humanos , Lípidos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Fosforilación , Unión Proteica , Receptores de Quimiocina/química , Receptores de Quimiocina/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
4.
EMBO J ; 39(4): e100574, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31930538

RESUMEN

Expansion of G4C2 repeats within the C9ORF72 gene is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Such repeats lead to decreased expression of the autophagy regulator C9ORF72 protein. Furthermore, sense and antisense repeats are translated into toxic dipeptide repeat (DPR) proteins. It is unclear how these repeats are translated, and in which way their translation and the reduced expression of C9ORF72 modulate repeat toxicity. Here, we found that sense and antisense repeats are translated upon initiation at canonical AUG or near-cognate start codons, resulting in polyGA-, polyPG-, and to a lesser degree polyGR-DPR proteins. However, accumulation of these proteins is prevented by autophagy. Importantly, reduced C9ORF72 levels lead to suboptimal autophagy, thereby impairing clearance of DPR proteins and causing their toxic accumulation, ultimately resulting in neuronal cell death. Of clinical importance, pharmacological compounds activating autophagy can prevent neuronal cell death caused by DPR proteins accumulation. These results suggest the existence of a double-hit pathogenic mechanism in ALS/FTD, whereby reduced expression of C9ORF72 synergizes with DPR protein accumulation and toxicity.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Autofagia , Proteína C9orf72/genética , Dipéptidos/toxicidad , Demencia Frontotemporal/genética , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/metabolismo , Muerte Celular , Expansión de las Repeticiones de ADN , Dipéptidos/genética , Demencia Frontotemporal/patología , Células HEK293 , Humanos , Neuronas/patología , Proteínas/genética , Proteínas/toxicidad
5.
J Mol Biol ; 430(24): 5257-5279, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30266595

RESUMEN

Numerous proteins can coalesce into amyloid self-assemblies, which are responsible for a class of diseases called amyloidoses, but which can also fulfill important biological functions and are of great interest for biotechnology. Amyloid aggregation is a complex multi-step process, poorly prone to detailed structural studies. Therefore, small molecules interacting with amyloids are often used as tools to probe the amyloid aggregation pathway and in some cases to treat amyloidoses as they prevent pathogenic protein aggregation. Here, we report on SynAggreg, an in vitro high-throughput (HT) platform dedicated to the precision study of amyloid aggregation and the effect of modulator compounds. SynAggreg relies on an accurate bi-fluorescent amyloid-tracer readout that overcomes some limitations of existing HT methods. It allows addressing diverse aspects of aggregation modulation that are critical for pathomechanistic studies, such as the specificity of compounds toward various amyloids and their effects on aggregation kinetics, as well as the co-assembly propensity of distinct amyloids and the influence of prion-like seeding on self-assembly. Furthermore, SynAggreg is the first HT technology that integrates tailored methodology to systematically identify synergistic compound combinations-an emerging strategy to improve fatal amyloidoses by targeting multiple steps of the aggregation pathway. To this end, we apply analytical combinatorial scores to rank the inhibition efficiency of couples of compounds and to readily detect synergism. Finally, the SynAggreg platform should be suited for the characterization of a broad class of amyloids, whether of interest for drug development purposes, for fundamental research on amyloid functions, or for biotechnological applications.


Asunto(s)
Proteínas Amiloidogénicas/química , Ensayos Analíticos de Alto Rendimiento/métodos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas Amiloidogénicas/antagonistas & inhibidores , Animales , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Humanos , Cinética
6.
Nat Commun ; 9(1): 2009, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789616

RESUMEN

Myotonic dystrophy type 1 and type 2 (DM1, DM2) are caused by expansions of CTG and CCTG repeats, respectively. RNAs containing expanded CUG or CCUG repeats interfere with the metabolism of other RNAs through titration of the Muscleblind-like (MBNL) RNA binding proteins. DM2 follows a more favorable clinical course than DM1, suggesting that specific modifiers may modulate DM severity. Here, we report that the rbFOX1 RNA binding protein binds to expanded CCUG RNA repeats, but not to expanded CUG RNA repeats. Interestingly, rbFOX1 competes with MBNL1 for binding to CCUG expanded repeats and overexpression of rbFOX1 partly releases MBNL1 from sequestration within CCUG RNA foci in DM2 muscle cells. Furthermore, expression of rbFOX1 corrects alternative splicing alterations and rescues muscle atrophy, climbing and flying defects caused by expression of expanded CCUG repeats in a Drosophila model of DM2.


Asunto(s)
Músculo Esquelético/metabolismo , Distrofia Miotónica/genética , Factores de Empalme de ARN/química , Proteínas de Unión al ARN/química , ARN/química , Animales , Sitios de Unión , Unión Competitiva , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Cinética , Modelos Moleculares , Músculo Esquelético/patología , Distrofia Miotónica/clasificación , Distrofia Miotónica/metabolismo , Distrofia Miotónica/patología , Motivos de Nucleótidos , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN/genética , ARN/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica
7.
Neuron ; 93(2): 331-347, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-28065649

RESUMEN

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a limited expansion of CGG repeats in the 5' UTR of FMR1. Two mechanisms are proposed to cause FXTAS: RNA gain-of-function, where CGG RNA sequesters specific proteins, and translation of CGG repeats into a polyglycine-containing protein, FMRpolyG. Here we developed transgenic mice expressing CGG repeat RNA with or without FMRpolyG. Expression of FMRpolyG is pathogenic, while the sole expression of CGG RNA is not. FMRpolyG interacts with the nuclear lamina protein LAP2ß and disorganizes the nuclear lamina architecture in neurons differentiated from FXTAS iPS cells. Finally, expression of LAP2ß rescues neuronal death induced by FMRpolyG. Overall, these results suggest that translation of expanded CGG repeats into FMRpolyG alters nuclear lamina architecture and drives pathogenesis in FXTAS.


Asunto(s)
Ataxia/genética , Proteínas de Unión al ADN/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Proteínas de la Membrana/metabolismo , Lámina Nuclear/metabolismo , Péptidos/genética , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Temblor/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Ataxia/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Lámina Nuclear/patología , Péptidos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Temblor/metabolismo
8.
EMBO J ; 35(12): 1276-97, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27103069

RESUMEN

An intronic expansion of GGGGCC repeats within the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). Ataxin-2 with intermediate length of polyglutamine expansions (Ataxin-2 Q30x) is a genetic modifier of the disease. Here, we found that C9ORF72 forms a complex with the WDR41 and SMCR8 proteins to act as a GDP/GTP exchange factor for RAB8a and RAB39b and to thereby control autophagic flux. Depletion of C9orf72 in neurons partly impairs autophagy and leads to accumulation of aggregates of TDP-43 and P62 proteins, which are histopathological hallmarks of ALS-FTD SMCR8 is phosphorylated by TBK1 and depletion of TBK1 can be rescued by phosphomimetic mutants of SMCR8 or by constitutively active RAB39b, suggesting that TBK1, SMCR8, C9ORF72, and RAB39b belong to a common pathway regulating autophagy. While depletion of C9ORF72 only has a partial deleterious effect on neuron survival, it synergizes with Ataxin-2 Q30x toxicity to induce motor neuron dysfunction and neuronal cell death. These results indicate that partial loss of function of C9ORF72 is not deleterious by itself but synergizes with Ataxin-2 toxicity, suggesting a double-hit pathological mechanism in ALS-FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Ataxina-2/metabolismo , Autofagia , Demencia Frontotemporal/patología , Neuronas Motoras/fisiología , Péptidos/metabolismo , Proteínas/metabolismo , Proteína C9orf72 , Muerte Celular , Humanos , Neuronas Motoras/metabolismo
9.
Cell Rep ; 3(3): 869-80, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23478018

RESUMEN

Fragile X-associated tremor/ataxia syndrome (FXTAS) is an inherited neurodegenerative disorder caused by the expansion of 55-200 CGG repeats in the 5' UTR of FMR1. These expanded CGG repeats are transcribed and accumulate in nuclear RNA aggregates that sequester one or more RNA-binding proteins, thus impairing their functions. Here, we have identified that the double-stranded RNA-binding protein DGCR8 binds to expanded CGG repeats, resulting in the partial sequestration of DGCR8 and its partner, DROSHA, within CGG RNA aggregates. Consequently, the processing of microRNAs (miRNAs) is reduced, resulting in decreased levels of mature miRNAs in neuronal cells expressing expanded CGG repeats and in brain tissue from patients with FXTAS. Finally, overexpression of DGCR8 rescues the neuronal cell death induced by expression of expanded CGG repeats. These results support a model in which a human neurodegenerative disease originates from the alteration, in trans, of the miRNA-processing machinery.


Asunto(s)
Ataxia/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , MicroARNs/metabolismo , Proteínas/metabolismo , Procesamiento Postranscripcional del ARN , Ribonucleasa III/metabolismo , Temblor/metabolismo , Expansión de Repetición de Trinucleótido , Animales , Ataxia/genética , Encéfalo/metabolismo , Muerte Celular , Síndrome del Cromosoma X Frágil/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Unión Proteica , Proteínas/genética , Proteínas de Unión al ARN , Ribonucleasa III/genética , Transcripción Genética , Temblor/genética
10.
ACS Chem Biol ; 7(12): 2036-45, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23009327

RESUMEN

Pyoverdine I is the main siderophore secreted byPseudomonas aeruginosa PAO1 to obtain access to iron. After extracellular iron chelation, pyoverdine-Fe uptake into the bacteria involves a specific outer-membrane transporter, FpvA. Iron is then released in the periplasm by a mechanism involving no siderophore modification but probably iron reduction. The proteins involved in this dissociation step are currently unknown. The pyoverdine locus contains the fpvCDEF operon, which contains four genes. These genes encode an ABC transporter of unknown function with the distinguishing characteristic of encompassing two periplasmic binding proteins, FpvC and FpvF, associated with the ATPase, FpvE, and the permease, FpvD. Deletion of these four genes partially inhibited cytoplasmic uptake of (55)Fe in the presence of pyoverdine and markedly slowed down the in vivo kinetics of iron release from the siderophore. This transporter is therefore involved in iron acquisition by pyoverdine in P. aeruginosa. Sequence alignments clearly showed that FpvC and FpvF belong to two different subgroups of periplasmic binding proteins. FpvC appears to be a metal-binding protein, whereas FpvF has homology with ferrisiderophore binding proteins. In vivo cross-linking assays and incubation of purified FpvC and FpvF proteins showed formation of complexes between both proteins. These complexes were able to bind in vitro PVDI-Fe, PVDI-Ga, or apo PVDI. This is the first example of an ABC transporter involved in iron acquisition via siderophores, with two periplasmic binding proteins interacting with the ferrisiderophore. The possible roles of FpvCDEF in iron uptake by the PVDI pathway are discussed.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Periplasma/metabolismo , Pseudomonas aeruginosa/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Electroforesis en Gel de Poliacrilamida , Genes Bacterianos , Datos de Secuencia Molecular , Pseudomonas aeruginosa/genética , Homología de Secuencia de Aminoácido , Espectrometría de Fluorescencia , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA