Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Public Health ; 11: 1212018, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808979

RESUMEN

Introduction: Bats are important providers of ecosystem services such as pollination, seed dispersal, and insect control but also act as natural reservoirs for virulent zoonotic viruses. Bats host multiple viruses that cause life-threatening pathology in other animals and humans but, themselves, experience limited pathological disease from infection. Despite bats' importance as reservoirs for several zoonotic viruses, we know little about the broader viral diversity that they host. Bat virus surveillance efforts are challenged by difficulties of field capture and the limited scope of targeted PCR- or ELISA-based molecular and serological detection. Additionally, virus shedding is often transient, thus also limiting insights gained from nucleic acid testing of field specimens. Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a broad serological tool used previously to comprehensively profile viral exposure history in humans, offers an exciting prospect for viral surveillance efforts in wildlife, including bats. Methods: Here, for the first time, we apply PhIP-Seq technology to bat serum, using a viral peptide library originally designed to simultaneously assay exposures to the entire human virome. Results: Using VirScan, we identified past exposures to 57 viral genera-including betacoronaviruses, henipaviruses, lyssaviruses, and filoviruses-in semi-captive Pteropus alecto and to nine viral genera in captive Eonycteris spelaea. Consistent with results from humans, we find that both total peptide hits (the number of enriched viral peptides in our library) and the corresponding number of inferred past virus exposures in bat hosts were correlated with poor bat body condition scores and increased with age. High and low body condition scores were associated with either seropositive or seronegative status for different viruses, though in general, virus-specific age-seroprevalence curves defied assumptions of lifelong immunizing infection, suggesting that many bat viruses may circulate via complex transmission dynamics. Discussion: Overall, our work emphasizes the utility of applying biomedical tools, like PhIP-Seq, first developed for humans to viral surveillance efforts in wildlife, while highlighting opportunities for taxon-specific improvements.


Asunto(s)
Quirópteros , Reservorios de Enfermedades , Animales , Humanos , Ecosistema , Estudios Seroepidemiológicos , Zoonosis
3.
J Exp Zool A Ecol Integr Physiol ; 337(5): 576-582, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35286769

RESUMEN

Body size affects many traits, but often in allometric, or disproportionate ways. For example, large avian and mammalian species circulate far more of some immune cells than expected for their size based on simple geometric principles. To date, such hypermetric immune scaling has mostly been described in zoo-dwelling individuals, so it remains obscure whether immune hyper-allometries have any natural relevance. Here, we asked whether granulocyte and lymphocyte allometries in wild birds differ from those described in captive species. Our previous allometric studies of avian immune cell concentrations were performed on animals kept for their lifetimes in captivity where conditions are benign and fairly consistent. In natural conditions, infection, stress, nutrition, climate, and myriad other forces could alter immune traits and hence mask any interspecific scaling relationships between immune cells and body size. Counter to this expectation, we found no evidence that immune cell allometries differed between captive and wild species, although we had to rely on cell proportion data, as insufficient concentration data were available for wild species. Our results indicate that even in variable and challenging natural contexts, immune allometries endure and might affect disease ecology and evolution.


Asunto(s)
Aves , Mamíferos , Animales , Tamaño Corporal , Clima , Leucocitos
4.
Proc Biol Sci ; 287(1934): 20200655, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32900319

RESUMEN

Body mass affects many biological traits, but its impacts on immune defences are fairly unknown. Recent research on mammals found that neutrophil concentrations disproportionately increased (scaled hypermetrically) with body mass, a result not predicted by any existing theory. Although the scaling relationship for mammals might predict how leucocyte concentrations scale with body mass in other vertebrates, vertebrate classes are distinct in many ways that might affect their current and historic interactions with parasites and hence the evolution of their immune systems. Subsequently, here, we asked which existing scaling hypothesis best-predicts relationships between body mass and lymphocyte, eosinophil and heterophil concentrations-the avian functional equivalent of neutrophils-among more than 100 species of birds. We then examined the predictive power of body mass relative to life-history variation, as extensive literature indicates that the timing of key life events has influenced immune system variation among species. Finally, we ask whether avian scaling patterns differ from the patterns we observed in mammals. We found that an intercept-only model best explained lymphocyte and eosinophil concentrations among birds, indicating that the concentrations of these cell types were both independent of body mass. For heterophils, however, body mass explained 31% of the variation in concentrations among species, much more than life-history variation (4%). As with mammalian neutrophils, avian heterophils scaled hypermetrically (b= 0.19 ± 0.05), but more steeply than mammals (approx. 1.5 ×; 0.11 ± 0.03). As such, we discuss why birds might require more broadly protective cells compared to mammals of the same body size. Overall, body mass appears to have strong influences on the architecture of immune systems.


Asunto(s)
Aves , Tamaño Corporal , Sistema Inmunológico , Animales , Evolución Biológica , Rasgos de la Historia de Vida , Filogenia
5.
J Exp Biol ; 223(Pt 8)2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32165437

RESUMEN

Seasonal changes in maximal thermogenic capacity (Msum) in wild black-capped chickadees suggests that adjustments in metabolic performance are slow and begin to take place before winter peaks. However, when mean minimal ambient temperature (Ta) reaches -10°C, the chickadee phenotype appears to provide enough spare capacity to endure days with colder Ta, down to -20°C or below. This suggests that birds could also maintain a higher antioxidant capacity as part of their cold-acclimated phenotype to deal with sudden decreases in temperature. Here, we tested how environmental mismatch affected oxidative stress by comparing cold-acclimated (-5°C) and transition (20°C) phenotypes in chickadees exposed to an acute 15°C drop in temperature with that of control individuals. We measured superoxide dismutase, catalase and glutathione peroxidase activities, as well as lipid peroxidation damage and antioxidant scavenging capacity in pectoralis muscle, brain, intestine and liver. We generally found differences between seasonal phenotypes and across tissues, but no differences with respect to an acute cold drop treatment. Our data suggest oxidative stress is closely matched to whole-animal physiology in cold-acclimated birds compared with transition birds, implying that changes to the oxidative stress system happen slowly.


Asunto(s)
Aclimatación , Pájaros Cantores , Animales , Frío , Estrés Oxidativo , Termogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...