Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 81(4): 767-783.e11, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33333017

RESUMEN

Chromatin is a barrier to efficient DNA repair, as it hinders access and processing of certain DNA lesions. ALC1/CHD1L is a nucleosome-remodeling enzyme that responds to DNA damage, but its precise function in DNA repair remains unknown. Here we report that loss of ALC1 confers sensitivity to PARP inhibitors, methyl-methanesulfonate, and uracil misincorporation, which reflects the need to remodel nucleosomes following base excision by DNA glycosylases but prior to handover to APEX1. Using CRISPR screens, we establish that ALC1 loss is synthetic lethal with homologous recombination deficiency (HRD), which we attribute to chromosome instability caused by unrepaired DNA gaps at replication forks. In the absence of ALC1 or APEX1, incomplete processing of BER intermediates results in post-replicative DNA gaps and a critical dependence on HR for repair. Hence, targeting ALC1 alone or as a PARP inhibitor sensitizer could be employed to augment existing therapeutic strategies for HRD cancers.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/metabolismo , Nucleosomas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , ADN Helicasas/genética , Replicación del ADN/efectos de los fármacos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Proteínas de Unión al ADN/genética , Recombinación Homóloga/efectos de los fármacos , Ratones , Ratones Noqueados , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Neoplasias Experimentales/genética , Nucleosomas/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética
2.
Genes Dev ; 35(1-2): 1-21, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33361389

RESUMEN

In this perspective, we introduce shelterin and the mechanisms of ATM activation and NHEJ at telomeres, before discussing the following questions: How are t-loops proposed to protect chromosome ends and what is the evidence for this model? Can other models explain how TRF2 mediates end protection? Could t-loops be pathological structures? How is end protection achieved in pluripotent cells? What do the insights into telomere end protection in pluripotent cells mean for the t-loop model of end protection? Why might different cell states have evolved different mechanisms of end protection? Finally, we offer support for an updated t-loop model of end protection, suggesting that the data is supportive of a critical role for t-loops in protecting chromosome ends from NHEJ and ATM activation, but that other mechanisms are involved. Finally, we propose that t-loops are likely dynamic, rather than static, structures.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/fisiología , Telómero/metabolismo , Telómero/patología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Inestabilidad Cromosómica , Reparación del ADN , Células Madre Embrionarias , Humanos , Modelos Biológicos , Células Madre Pluripotentes , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
3.
Nature ; 589(7840): 103-109, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33239783

RESUMEN

Mammalian telomeres protect chromosome ends from aberrant DNA repair1. TRF2, a component of the telomere-specific shelterin protein complex, facilitates end protection through sequestration of the terminal telomere repeat sequence within a lariat T-loop structure2,3. Deleting TRF2 (also known as TERF2) in somatic cells abolishes T-loop formation, which coincides with telomere deprotection, chromosome end-to-end fusions and inviability3-9. Here we establish that, by contrast, TRF2 is largely dispensable for telomere protection in mouse pluripotent embryonic stem (ES) and epiblast stem cells. ES cell telomeres devoid of TRF2 instead activate an attenuated telomeric DNA damage response that lacks accompanying telomere fusions, and propagate for multiple generations. The induction of telomere dysfunction in ES cells, consistent with somatic deletion of Trf2 (also known as Terf2), occurs only following the removal of the entire shelterin complex. Consistent with TRF2 being largely dispensable for telomere protection specifically during early embryonic development, cells exiting pluripotency rapidly switch to TRF2-dependent end protection. In addition, Trf2-null embryos arrest before implantation, with evidence of strong DNA damage response signalling and apoptosis specifically in the non-pluripotent compartment. Finally, we show that ES cells form T-loops independently of TRF2, which reveals why TRF2 is dispensable for end protection during pluripotency. Collectively, these data establish that telomere protection is solved by distinct mechanisms in pluripotent and somatic tissues.


Asunto(s)
Cromosomas de los Mamíferos/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/metabolismo , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/deficiencia , Animales , Blastocisto/citología , Blastocisto/metabolismo , Supervivencia Celular , Cromosomas de los Mamíferos/genética , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Pluripotentes/citología , Telómero/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
4.
Cell Rep ; 33(12): 108546, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33357438

RESUMEN

Regulator of telomere length 1 (RTEL1) is an essential helicase that maintains telomere integrity and facilitates DNA replication. The source of replication stress in Rtel1-deficient cells remains unclear. Here, we report that loss of RTEL1 confers extensive transcriptional changes independent of its roles at telomeres. The majority of affected genes in Rtel1-/- cells possess G-quadruplex (G4)-DNA-forming sequences in their promoters and are similarly altered at a transcriptional level in wild-type cells treated with the G4-DNA stabilizer TMPyP4 (5,10,15,20-Tetrakis-(N-methyl-4-pyridyl)porphine). Failure to resolve G4-DNAs formed in the displaced strand of RNA-DNA hybrids in Rtel1-/- cells is suggested by increased R-loops and elevated transcription-replication collisions (TRCs). Moreover, removal of R-loops by RNaseH1 overexpression suppresses TRCs and alleviates the global replication defects observed in Rtel1-/- and Rtel1PIP_box knockin cells and in wild-type cells treated with TMPyP4. We propose that RTEL1 unwinds G4-DNA/R-loops to avert TRCs, which is important to prevent global deregulation in both transcription and DNA replication.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , G-Cuádruplex , Animales , ADN/biosíntesis , ADN/genética , Humanos , Ratones , Transcripción Genética
5.
Nature ; 575(7783): 523-527, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31723267

RESUMEN

The protection of telomere ends by the shelterin complex prevents DNA damage signalling and promiscuous repair at chromosome ends. Evidence suggests that the 3' single-stranded telomere end can assemble into a lasso-like t-loop configuration1,2, which has been proposed to safeguard chromosome ends from being recognized as DNA double-strand breaks2. Mechanisms must also exist to transiently disassemble t-loops to allow accurate telomere replication and to permit telomerase access to the 3' end to solve the end-replication problem. However, the regulation and physiological importance of t-loops in the protection of telomere ends remains unknown. Here we identify a CDK phosphorylation site in the shelterin subunit at Ser365 of TRF2, whose dephosphorylation in S phase by the PP6R3 phosphatase provides a narrow window during which the RTEL1 helicase can transiently access and unwind t-loops to facilitate telomere replication. Re-phosphorylation of TRF2 at Ser365 outside of S phase is required to release RTEL1 from telomeres, which not only protects t-loops from promiscuous unwinding and inappropriate activation of ATM, but also counteracts replication conflicts at DNA secondary structures that arise within telomeres and across the genome. Hence, a phospho-switch in TRF2 coordinates the assembly and disassembly of t-loops during the cell cycle, which protects telomeres from replication stress and an unscheduled DNA damage response.


Asunto(s)
Ciclo Celular , Quinasas Ciclina-Dependientes/metabolismo , Fosfoserina/metabolismo , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/química , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN/biosíntesis , ADN/química , ADN/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN , ADN Helicasas/metabolismo , Reparación del ADN , Replicación del ADN , Fibroblastos , Genoma/genética , Células HEK293 , Humanos , Ratones , Mutación , Fenotipo , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Fase S , Complejo Shelterina , Telomerasa/metabolismo , Telómero/genética , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética
6.
Proc Natl Acad Sci U S A ; 115(8): E1829-E1838, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29432178

RESUMEN

Eukaryotes respond to amino acid starvation by enhancing the translation of mRNAs encoding b-ZIP family transcription factors (GCN4 in Saccharomyces cerevisiae and ATF4 in mammals), which launch transcriptional programs to counter this stress. This pathway involves phosphorylation of the eIF2 translation factor by Gcn2-protein kinases and is regulated by upstream ORFs (uORFs) in the GCN4/ATF4 5' leaders. Here, we present evidence that the transcription factors that mediate this response are not evolutionarily conserved. Although cells of the fission yeast Schizosaccharomyces pombe respond transcriptionally to amino acid starvation, they lack clear Gcn4 and Atf4 orthologs. We used ribosome profiling to identify mediators of this response in S. pombe, looking for transcription factors that behave like GCN4 We discovered a transcription factor (Fil1) translationally induced by amino acid starvation in a 5' leader and Gcn2-dependent manner. Like Gcn4, Fil1 is required for the transcriptional response to amino acid starvation, and Gcn4 and Fil1 regulate similar genes. Despite their similarities in regulation, function, and targets, Fil1 and Gcn4 belong to different transcription factor families (GATA and b-ZIP, respectively). Thus, the same functions are performed by nonorthologous proteins under similar regulation. These results highlight the plasticity of transcriptional networks, which maintain conserved principles with nonconserved regulators.


Asunto(s)
Aminoácidos/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Schizosaccharomyces/metabolismo , Factores de Transcripción/metabolismo , Aminoácidos/farmacología , Proteínas Fúngicas/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...