Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 15(48): 19821, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38054502

RESUMEN

Correction for 'MXenes vs. clays: emerging and traditional 2D layered nanoarchitectonics' by Eduardo Ruiz-Hitzky et al., Nanoscale, 2023, https://doi.org/10.1039/d3nr03037g.

2.
Adv Healthc Mater ; : e2303861, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38041539

RESUMEN

Responsive magnetic nanomaterials offer significant advantages for innovative therapies, for instance, in cancer treatments that exploit on-demand delivery on alternating magnetic field (AMF) stimulus. In this work, biocompatible magnetic bionanocomposite films are fabricated from chitosan by film casting with incorporation of magnetite nanoparticles (MNPs) produced by facile one pot synthesis. The influence of synthesis conditions and MNP concentration on the films' heating efficiency and heat dissipation are evaluated through spatio-temporal mapping of the surface temperature changes by video-thermography. The cast films have a thickness below 100 µm, and upon exposure to AMF (663 kHz, 12.8 kA m-1 ), induce exceptionally strong heating, reaching a maximum temperature increase of 82 °C within 270 s irradiation. Further, it is demonstrated that the films can serve as substrates that supply heat for multiple hyperthermia scenarios, including: i) non-contact automated heating of cell culture medium, ii) heating of gelatine-based hydrogels of different shapes, and iii) killing of cancerous melanoma cells. The films are versatile components for non-contact stimulus with translational potential in multiple biomedical applications.

3.
Nanoscale ; 15(47): 18959-18979, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37937945

RESUMEN

Although MXene materials are considered an emerging research topic, they are receiving considerable interest because, like metals and graphene, they are good electronic conductors but with the particularity that they have a marked hydrophilic character. Having a structural organization and properties close to those of clay minerals (natural silicates typically with a lamellar morphology), they are sometimes referred to as "conducting clays" and exhibit colloidal, surface and intercalation properties also similar to those of clay minerals. The present contribution aims to inform and discuss the nature of MXenes in comparison with clay phyllosilicates, taking into account their structural analogies, outstanding surface properties and advanced applications. The current in-depth understanding of clay minerals may represent a basis for the future development of MXene-derived nanoarchitectures. Comparative examples of the preparation, and studies on the properties and applications of various nanoarchitectures based on clays and MXenes have been included in the present work.

4.
Dalton Trans ; 52(45): 16951-16962, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37930107

RESUMEN

Magnetic nanoarchitectures have been used to introduce multifunctionality in biopolymeric matrices. Bionanocomposite foams based on the corn protein zein were prepared for the first time using the hydrophobic properties of zein in a sequential treatment consisting of the removal of ethanol-soluble fractions, followed by the water swelling of the remaining phase and a further freeze-drying process. When this protocol is applied to zein pellets, they can be consolidated as porous monoliths. Moreover, it is possible to incorporate diverse types of inorganic nanoparticles in the starting pellet to produce the bionanocomposite foams. In particular, the preparation of superparamagnetic foams has been explored using two approaches: the direct incorporation of magnetite nanoparticles in a ferrofluid by impregnation in the foams, and the application of the foaming process to mixtures of zein with magnetite nanoparticles alone or previously assembled into sepiolite clay fibers. The first methodology leads to the production of inhomogeneous foams, while the use of magnetite nanoparticles and better Fe3O4-sepiolite nanoarchitectured materials as fillers results in more homogeneous materials with improved water stability and mechanical properties, offering superparamagnetic behavior. The resulting multifunctional foams have been tested in adsorption processes using the herbicide 4-chloro-2-methylphenoxyacetic acid as a model pollutant, confirming their potential utility in decontamination applications in open waters as they can be easily recovered from the aqueous medium using a magnet.

5.
Nanoscale Adv ; 5(16): 4107-4123, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37560428

RESUMEN

Although hydroxypropyl methylcellulose (HPMC) has been proposed as renewable substitute for traditional plastic, its barrier and active properties need to be improved. Thus, the combination of an organic residue such as kraft lignin (0-10% w/w) and a natural clay such as montmorillonite (3% w/w) by application of ultrasound can significantly improve HPMC properties. This is most likely due to the close interaction between lignin and montmorillonite, which leads to delamination of the clay and improves its dispersion within the HPMC matrix. Specifically, the addition of kraft lignin to the bionanocomposite films provided them with UV-shielding, antioxidant capacity and antibacterial activity. The incorporation of 3% montmorillonite resulted in reductions of 65.8% and 11.4% in oxygen (OP) and water vapor permeabilities (WVP), respectively. Moreover, a reduction of 43.8% in WVP was achieved when both lignin (1%) and montmorillonite (3%) were incorporated, observing a synergistic effect. Thus, the HPMC bionanocomposite with 1% lignin and 3% montmorillonite, presented good thermal stability and mechanical strength with significantly improved gas barrier permeability, as well as UV-shielding (maintaining a good transparency), antioxidant and antibacterial activities.

6.
Beilstein J Nanotechnol ; 14: 522-534, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152474

RESUMEN

In the present work, the bottom-up fabrication of biohybrid materials using a nanoarchitectonics approach has been applied to entrap living cells. Unicellular microorganisms, that is, cyanobacteria and yeast cells, have been immobilized in silica and silicate-based substrates organized as nanostructured materials. In a first attempt, matrices based on bionanocomposites of chitosan and alginate incorporating sepiolite clay mineral and shaped as films, beads, or foams have been explored for the immobilization of cyanobacteria. It has been observed that this type of biohybrid substrates leads to serious problems regarding the long-time survival of the encapsulated microorganisms. Alternative procedures using silica-based matrices with low sodium content, generated by sol-gel methods, as well as pre-synthesised yolk-shell bionanohybrids have been studied subsequently. Optical microscopy and SEM confirm that the silica shell microstructures provide a reduced contact between cells. The inorganic matrix increases the survival of the cells and maintains their bioactivity. Thus, the encapsulation efficiency is improved compared to the approach using a direct contact of cells in a silica matrix. Encapsulated yeast produced ethanol over a period of several days, pointing out the useful biocatalytic potential of the approach and suggesting further optimization of the present protocols.

7.
Carbohydr Polym ; 299: 120204, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36876815

RESUMEN

Super strength and high barrier properties are the bottleneck of the application of cellulose film materials. Herein, it is reported a flexible gas barrier film with nacre-like layered structure, in which 1D TEMPO-oxidized nanocellulose (TNF) and 2D MXene self-assembled to form an interwoven stack structure with 0D AgNPs filling the void space. The strong interaction and dense structure endowed TNF/MX/AgNPs film with mechanical properties far superior to PE films and acid-base stability. Importantly, the film presented ultra-low oxygen permeability confirmed by molecular dynamics simulations and better barrier properties to volatile organic gases than PE films. It is here considered the tortuous path diffusion mechanism of the composite film responsible for the enhanced gas barrier performance. The TNF/MX/AgNPs film also possessed antibacterial properties, biocompatibility and degradability (completely degraded after 150 days in soil). Collectively, the TNF/MX/AgNPs film brings innovative insights into the design and fabrication of high-performance materials.

8.
ACS Omega ; 8(1): 1026-1036, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36643441

RESUMEN

Sepiolite is a natural clay silicate that is widely used, including biomedical applications; notably sepiolite shows promising features for the transfer of biological macromolecules into mammalian cells. However, before its use, such an approach should address the efficiency of binding to biological macromolecules and cell toxicity. Because sepiolite spontaneously forms aggregates, its disaggregation can represent an important challenge for improving the suspension performance and the assembly with biological species. However, this can also influence the toxicity of sepiolite in mammalian cells. Here, a very pure commercial sepiolite (Pangel S9), which is present as a partially defibrillated clay mineral, is used to study the consequences of additional deagglomeration/dispersion through sonication. We analyzed the impact of extra sonication on the dispersion of sepiolite aggregates. Factors such as sonication time, sonicator power, and temperature are taken into account. With increasing sonication time, a decrease in aggregation is observed, as well as a decrease in the length of the nanofibers monitored by atomic force microscopy. Changes in the temperature and pH of the solution are also observed during the sonication process. Moreover, although the adsorption capacity of bovine serum albumin (BSA) protein on sepiolite is increased with sonication time, the DNA adsorption efficiency remains unaffected. Finally, sonication of sepiolite decreases the hemolytic activity in blood cells and the toxicity in two different human cell lines. These data show that extra sonication of deagglomerated sepiolite can further favor its interaction with some biomacromolecules (e.g., BSA), and, in parallel, decrease sepiolite toxicity in mammalian cells. Therefore, sonication represents an alluring procedure for future biomedical applications of sepiolite, even when using commercial defibrillated particles.

9.
Adv Healthc Mater ; 11(12): e2102367, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35285165

RESUMEN

This study shows the effective use of MXene-based nanomaterials to improve the performance of biocomposite sponges in wound healing. In this way, diverse chitin/MXene composite sponges are fabricated by incorporating MXene-based nanomaterials with various morphology (accordion-shaped, intercalated, single-layer, gold nanoparticles (AuNPs)-loaded single-layer) into the network of chitin sponge (CH), which can prevent massive blood losses and promote the healing process of bacterial-infected wounds. With the addition of MXene-based nanomaterials, the hemostatic efficacy of CH is enhanced due to the improved hemophilicity and accelerated blood coagulation kinetics. Furthermore, the composite sponges show a predominant antibacterial activity through the synergy between the capture and the photothermal effects. Importantly, the addition of AuNPs to composite sponges further improves hemostatic performance and promotes normal skin cell migration to heal the infected wound, achieving wound closure rates of 84% on day 9. These initial studies expand the applications of MXene-based nanomaterials in biomedical fields.


Asunto(s)
Hemostáticos , Nanopartículas del Metal , Antibacterianos/farmacología , Quitina/farmacología , Oro , Hemostáticos/farmacología , Nanopartículas del Metal/uso terapéutico , Cicatrización de Heridas
10.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35163770

RESUMEN

Carbon nanostructures are widely used as fillers to tailor the mechanical, thermal, barrier, and electrical properties of polymeric matrices employed for a wide range of applications. Reduced graphene oxide (rGO), a carbon nanostructure from the graphene derivatives family, has been incorporated in composite materials due to its remarkable electrical conductivity, mechanical strength capacity, and low cost. Graphene oxide (GO) is typically synthesized by the improved Hummers' method and then chemically reduced to obtain rGO. However, the chemical reduction commonly uses toxic reducing agents, such as hydrazine, being environmentally unfriendly and limiting the final application of composites. Therefore, green chemical reducing agents and synthesis methods of carbon nanostructures should be employed. This paper reviews the state of the art regarding the green chemical reduction of graphene oxide reported in the last 3 years. Moreover, alternative graphitic nanostructures, such as carbons derived from biomass and carbon nanostructures supported on clays, are pointed as eco-friendly and sustainable carbonaceous additives to engineering polymer properties in composites. Finally, the application of these carbon nanostructures in polymer composites is briefly overviewed.


Asunto(s)
Grafito/síntesis química , Tecnología Química Verde/métodos , Biomasa , Arcilla/química , Grafito/química , Nanoestructuras
11.
Front Chem ; 9: 733105, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34485248

RESUMEN

Sepiolite and palygorskite fibrous clay minerals are 1D silicates featuring unique textural and structural characteristics useful in diverse applications, and in particular as rheological additives. Here we report on the ability of grinded sepiolite to generate highly viscous and stable hydrogels by sonomechanical irradiation (ultrasounds). Adequate drying of such hydrogels leads to low-density xerogels that show extensive fiber disaggregation compared to the starting sepiolite-whose fibers are agglomerated as bundles. Upon re-dispersion in water under high-speed shear, these xerogels show comparable rheological properties to commercially available defibrillated sepiolite products, resulting in high viscosity hydrogels that minimize syneresis. These colloidal systems are thus very interesting as they can be used to stabilize many diverse compounds as well as nano-/micro-particles, leading to the production of a large variety of composites and nano/micro-architectured solids. In this context, we report here various examples showing how colloidal routes based on sepiolite hydrogels can be used to obtain new heterostructured functional materials, based on their assembly to solids of diverse topology and composition such as 2D and 1D kaolinite and halloysite aluminosilicates, as well as to the 2D synthetic Mg,Al-layered double hydroxides (LDH).

12.
J Hazard Mater ; 417: 126068, 2021 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-34229386

RESUMEN

TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl)-oxidized cellulose nanofibers (CNF) were assembled to fibrous clay sepiolite (SEP) by means of a high shear homogenizer and an ultrasound treatment followed by lyophilization using three different methods: normal freezing, directional freezing, and a sequential combination of both methods. Methyltrimethoxysilane (MTMS) was grafted to the foam surface by the vapor deposition method to introduce hydrophobicity to the resulting materials. Both the SEP addition (for the normal and directional freezing methods) and the refreezing preparation procedure enhanced the compressive strength of the foams, showing compressive moduli in the range from 28 to 103 kPa for foams loaded with 20% w/w sepiolite. Mercury intrusion porosimetry shows that the average pore diameters were in the range of 30-45 µm depending on the freezing method. This large porosity leads to materials with very low apparent density, around 6 mg/cm3, and very high porosity >99.5%. In addition, water contact angle measurement and Fourier-transform infrared spectroscopy (FTIR) were applied to confirm the foam hydrophobicity, which is suitable for use as an oil sorbent. The sorption ability of these composite foams has been tested using olive and motor oils as models of organophilic liquid adsorbates, observing a maximum sorption capacity of 138 and 90 g/g, respectively.


Asunto(s)
Silicatos de Magnesio , Nanofibras , Interacciones Hidrofóbicas e Hidrofílicas , Aceites
13.
Nanomaterials (Basel) ; 11(3)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33803933

RESUMEN

Reduced graphene oxide (rGO) is a promising graphene-based material, with transversal applicability to a wide range of technological fields. Nevertheless, the common use of efficient-but hazardous to environment and toxic-reducing agents prevents its application in biological and other fields. Consequently, the development of green reducing strategies is a requirement to overcome this issue. Herein, a green, simple, and cost-effective one-step reduction methodology is presented. Graphene oxide (GO) was hydrothermally reduced in the presence of caffeic acid (CA), a natural occurring phenolic compound. The improvement of the hydrothermal reduction through the presence of CA is confirmed by XRD, Raman, XPS and TGA analysis. Moreover, CA polymerizes under hydrothermal conditions with the formation of spherical and non-spherical carbon particles, which can be useful for further rGO functionalization. FTIR and XPS confirm the oxygen removal in the reduced samples. The high-resolution scanning transmission electron microscopy (HRSTEM) images also support the reduction, showing rGO samples with an ordered graphitic layered structure. The promising rGO synthesized by this eco-friendly methodology can be explored for many applications.

14.
Recent Pat Nanotechnol ; 14(4): 328-350, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33087037

RESUMEN

BACKGROUND: COVID-19 pandemic is a global problem that requires the point of view of basic sciences and medicine as well as social, economics and politics disciplines. Viral particles of coronaviruses including SARS-CoV-2 as well as other enveloped viruses like influenza virus could be considered as an approximation to functional core-shell nanoparticles and therefore, their study enters the realm of nanotechnology. In this context, nanotechnology can contribute to alleviate some of the current challenges posed by COVID-19 pandemic. METHODS: The present analysis contributed to diverse sources of general information, databases on scientific literature and patents to produce a review affording information on relevant areas where as nanotechnology has offered response to coronavirus challenges in the past and may be relevant now, and has offered an update of the current information on SARS-CoV-2 and COVID-19 issues. RESULTS: This review contribution includes specific information including: 1) An introduction to current research on nanotechnology and related recent patents for COVID-19 responses; 2) Analysis of nonimmunogenic and immunogenic prophylaxis of COVID-19 using Nanotechnology; 3) Tools devoted to detection & diagnosis of coronaviruses and COVID-19: the role of Nanotechnology; and 4) A compilation on the research and patents on nanotechnology dealing with therapeutics & treatments of COVID-19. CONCLUSION: Among the increasing literature on COVID-19, there are few works analyzing the relevance of Nanotechnology, and giving an analysis on patents dealing with coronaviruses that may provide useful information on the area. This review offers a general view of the current research investigation and recent patents dealing with aspects of immunogenic and non-immunogenic prophylaxis, detection and diagnosis as well as therapeutics and treatments.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19 , Nanotecnología , Pandemias , SARS-CoV-2 , COVID-19/epidemiología , Patentes como Asunto
15.
Nanomaterials (Basel) ; 10(10)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096705

RESUMEN

This review aims to showcase the current use of graphene derivatives, graphene-based nanomaterials in particular, in biopolymer-based composites for food packaging applications. A brief introduction regarding the valuable attributes of available and emergent bioplastic materials is made so that their contributions to the packaging field can be understood. Furthermore, their drawbacks are also disclosed to highlight the benefits that graphene derivatives can bring to bio-based formulations, from physicochemical to mechanical, barrier, and functional properties as antioxidant activity or electrical conductivity. The reported improvements in biopolymer-based composites carried out by graphene derivatives in the last three years are discussed, pointing to their potential for innovative food packaging applications such as electrically conductive food packaging.

16.
Adv Healthc Mater ; 9(19): e2000979, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32885616

RESUMEN

Researchers, engineers, and medical doctors are made aware of the severity of the COVID-19 infection and act quickly against the coronavirus SARS-CoV-2 using a large variety of tools. In this review, a panoply of nanoscience and nanotechnology approaches show how these disciplines can help the medical, technical, and scientific communities to fight the pandemic, highlighting the development of nanomaterials for detection, sanitation, therapies, and vaccines. SARS-CoV-2, which can be regarded as a functional core-shell nanoparticle (NP), can interact with diverse materials in its vicinity and remains attached for variable times while preserving its bioactivity. These studies are critical for the appropriate use of controlled disinfection systems. Other nanotechnological approaches are also decisive for the development of improved novel testing and diagnosis kits of coronavirus that are urgently required. Therapeutics are based on nanotechnology strategies as well and focus on antiviral drug design and on new nanoarchitectured vaccines. A brief overview on patented work is presented that emphasizes nanotechnology applied to coronaviruses. Finally, some comments are made on patents of the initial technological responses to COVID-19 that have already been put in practice.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus , Nanotecnología/métodos , Pandemias , Neumonía Viral , Antivirales/administración & dosificación , Betacoronavirus/química , Betacoronavirus/ultraestructura , COVID-19 , Prueba de COVID-19 , Vacunas contra la COVID-19 , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/terapia , Desinfección/métodos , Humanos , Nanopartículas/química , Nanopartículas/ultraestructura , Nanoestructuras/química , Nanotecnología/legislación & jurisprudencia , Pandemias/prevención & control , Patentes como Asunto , Neumonía Viral/diagnóstico , Neumonía Viral/prevención & control , Neumonía Viral/terapia , SARS-CoV-2 , Propiedades de Superficie , Vacunas Virales/administración & dosificación
18.
Materials (Basel) ; 13(4)2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32054135

RESUMEN

This work constitutes a basic study about the first exploration on the preparation of biohybrids based on the corn protein zein and layered metal hydroxides, such as layered double hydroxides (LDH) and layered single hydroxides (LSHs). For this purpose, MgAl layered double hydroxide and the Co2(OH)3 layered single hydroxide were selected as hosts, and various synthetic approaches were explored to achieve the formation of the zein-layered hydroxide biohybrids, profiting from the presence of negatively charged groups in zein in basic medium. Zein-based layered hydroxide biohybrids were characterized by diverse physicochemical techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis/differential thermal analysis (TG/DTA), solid state 13C cross-polarization magical angle spinning nuclear magnetic resonance (CP-MAS NMR), field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), etc., which suggest that the different synthesis procedures employed and the anion located in the interlayer region of the inorganic host material seem to have a strong influence on the final features of the biohybrids, resulting in mixed, single intercalated, or highly exfoliated intercalated phases. Thus, the resulting biohybrids based on zein and layered hydroxides could have interest in applications in biomedicine, biosensing, materials for electronic devices, catalysis, and photocatalysis.

19.
Dalton Trans ; 49(12): 3830-3840, 2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-31834335

RESUMEN

Biohybrid materials were prepared by co-assembling the three following components: nanotubular halloysite, microfibrous sepiolite, and cellulose nanofibers dispersed in water, in order to exploit the most salient features of each individual component and to render homogeneous, flexible, yet strong films. Indeed, the incorporation of halloysite improves the mechanical performance of the resulting hybrid nanopapers and the assembly of the three components modifies the surface features concerning wetting properties compared to pristine materials, so that the main characteristics of the resulting materials become tunable with regard to certain properties. Owing to their hierarchical porosity together with their diverse surface characteristics, these hybrids can be used in diverse biomedical/pharmaceutical applications. Herein, for instance, loading with two model drugs, salicylic acid and ibuprofen, allows controlled and sustained release as deduced from antimicrobial assays, opening a versatile path for developing other related organic-inorganic materials of potential interest in diverse application fields.


Asunto(s)
Antibacterianos/farmacología , Celulosa/química , Ibuprofeno/química , Ibuprofeno/farmacología , Nanofibras/química , Ácido Salicílico/farmacología , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Ácido Salicílico/química , Relación Estructura-Actividad , Propiedades de Superficie
20.
Beilstein J Nanotechnol ; 10: 1140-1156, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293852

RESUMEN

Thought as raw materials clay minerals are often disregarded in the development of advanced materials. However, clays of natural and synthetic origin constitute excellent platforms for developing nanostructured functional materials for numerous applications. They can be easily assembled to diverse types of nanoparticles provided with magnetic, electronic, photoactive or bioactive properties, allowing to overcome drawbacks of other types of substrates in the design of functional nanoarchitectures. Within this scope, clays can be of special relevance in the production of photoactive materials as they offer an advantageous way for the stabilization and immobilization of diverse metal-oxide nanoparticles. The controlled assembly under mild conditions of titanium dioxide and zinc oxide nanoparticles with clay minerals to give diverse clay-semiconductor nanoarchitectures are summarized and critically discussed in this review article. The possibility to use clay minerals as starting components showing different morphologies, such as layered, fibrous, or tubular morphologies, to immobilize these types of nanoparticles mainly plays a role in i) the control of their size and size distribution on the solid surface, ii) the mitigation or suppression of the nanoparticle aggregation, and iii) the hierarchical design for selectivity enhancements in the catalytic transformation and for improved overall reaction efficiency. This article tries also to present new steps towards more sophisticated but efficient and highly selective functional nanoarchitectures incorporating photosensitizer elements for tuning the semiconductor-clay photoactivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...