Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 356: 124335, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38848957

RESUMEN

Organic materials such as bark and biochar can be effective filter materials to treat stormwater. However, the efficiency of such filters in retaining microplastics (MPs) - an emerging stormwater pollutant - has not been sufficiently studied. This study investigated the removal and transport of a mixture of MPs commonly associated with stormwater. Different MP types (polyamide, polyethylene, polypropylene, and polystyrene) were mixed into the initial 2 cm material of horizontal bark and biochar filters of 25, 50, and 100 cm lengths. The MP types consisted of spherical and fragmented shapes in size ranges of 25-900 µm. The filters were subjected to a water flow of 5 mL/min for one week, and the total effluents were analyzed for MPs by µFTIR imaging. To gain a deeper insight, one 100 cm bark filter replica was split into 10 cm segments, and MPs in each segment were extracted and counted. The results showed that MPs were retained effectively, >97%, in all biochar and bark filters. However, MPs were detected in all effluents regardless of filter length. Effluent concentrations of 5-750 MP/L and 35-355 MP/L were measured in bark and biochar effluents, respectively, with >91% of the MP counts consisting of small-sized (25 µm) polyamide spherical particles. Combining all data, a decrease in average MP concentration was noticed with longer filters, likely attributed to channeling in a 25 and 50-cm filter. The analyses of MPs in the bark media revealed that most MPs were retained in the 0-10 cm segment but that some MPs were transported further, with 19% of polyamide retained in the 80-90 cm segment. Overall, this study shows promising results for bark and biochar filters to retain MPs, while highlighting the importance of systematic packing of filters to reduce MP emissions to the environment from polluted stormwater.


Asunto(s)
Carbón Orgánico , Filtración , Microplásticos , Corteza de la Planta , Contaminantes Químicos del Agua , Carbón Orgánico/química , Filtración/métodos , Corteza de la Planta/química , Contaminantes Químicos del Agua/análisis , Lluvia/química , Eliminación de Residuos Líquidos/métodos
3.
J Environ Manage ; 344: 118690, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586166

RESUMEN

Microplastics accumulate in stormwater and can ultimately enter freshwater recipients, and pose a serious risk to aquatic life. This study investigated the effectiveness of lab-scale horizontal flow sand filters of differing lengths (25, 50 and 100 cm) in retaining four types of thermoplastic microplastics commonly occurring in stormwater runoff (polyamide, polyethylene, polypropylene, and polyethylene terephthalate). Despite the differences in particle shape, size and density, the study revealed that more than 98% of the spiked microplastics were retained in all filters, with a slightly increased removal with increased filter length. At a flow rate of 1 mL/min and after one week of operation, 62-84% of the added microplastics agglomerated in the first 2 cm of the filters. The agglomerated microplastics included 96% of high-density fibers. Larger-sized particles were retained in the sand media, while microplastics smaller than 50 µm were more often detected in the effluent. Microplastics were quantified and identified using imaging based micro Fourier Transform Infrared Spectroscopy. The efficient retention of microplastics in low-flow horizontal sand filters, demonstrated by the results, highlights their potential importance for stormwater management. This retention is facilitated by various factors, including microplastic agglomeration, particle sedimentation of heavy fibers and favorable particle-to-media size ratios.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Polipropilenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...