Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Musculoskelet Disord ; 23(1): 1012, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36424560

RESUMEN

BACKGROUND: During pelvic Sarcoma resections, Surgeons often struggle to obtain negative margins while minimizing collateral damage and maintaining limb function. These complications are usually due to the complex anatomy of the pelvis. Here we present an accurate 3D surgical approach, including pre-operative printing of models and intraoperative patient-specific instruments (PSIs) for optimizing pelvic sarcoma resections. METHODS: This single-center retrospective study (N = 11) presents surgical, functional, and oncological outcomes of patients (average age 14.6 +/- 7.6 years, 4 males) who underwent pelvic sarcoma resections using a 3D surgical approach between 2016 and 2021. All patients were followed up for at least 24 months (mean = 38.9 +/- 30.1 months). RESULTS: Our results show promising surgical, oncological, and functional outcomes. Using a 3D approach, 90.9% had negative margins, and 63.6% did not require reconstruction surgery. The average estimated blood loss was 895.45 ± 540.12 cc, and the average surgery time was 3:38 ± 0.05 hours. Our results revealed no long-term complications. Three patients suffered from short-term complications of superficial wound infections. At 24 month follow up 72.7% of patients displayed no evidence of disease. The average Musculoskeletal Tumor Society (MSTS) score at 12 months was 22.81. CONCLUSION: 3D technology enables improved accuracy in tumor resections, allowing for less invasive procedures and tailored reconstruction surgeries, potentially leading to better outcomes in function and morbidity. We believe that this approach will enhance treatments and ease prognosis for patients diagnosed with pelvic sarcoma and will become the standard of care in the future.


Asunto(s)
Neoplasias Óseas , Hemipelvectomía , Osteosarcoma , Sarcoma , Neoplasias de los Tejidos Blandos , Masculino , Humanos , Niño , Adolescente , Adulto Joven , Adulto , Hemipelvectomía/métodos , Recuperación del Miembro , Estudios Retrospectivos , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/cirugía , Resultado del Tratamiento , Osteosarcoma/diagnóstico por imagen , Osteosarcoma/cirugía , Sarcoma/cirugía , Neoplasias de los Tejidos Blandos/cirugía , Márgenes de Escisión
2.
J Orthop ; 32: 36-42, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35601209

RESUMEN

Background: Primary bone sarcomas are associated with critically sized bone defects and require complete resection with negative margins. Recent advancements in health care have pioneered novel approaches such as the implementation of 3D surgical technologies. This study presents oncological and functional outcomes following tumor resections of long bones with the use of customized 3D-printed Patient Specific Instruments (PSIs). Methods: This single-center retrospective study is comprised of seventeen patients who underwent either intercalary (N = 12) or geographic (N = 5) resections with various reconstruction methods including allograft (N = 8), vascularized fibula (Capanna) (N = 7), and 3D printed customized titanium implants (N = 2), between the years 2016-2020. All patients were operated on with a 3D surgical workflow, including intraoperative PSIs, and were followed up postoperatively for at least 12 months (average 31.40 ± 12.13 months) to assess oncological and functional outcomes. Results: All patients demonstrated negative surgical margins, apart from one patient who had planned positive margins. Three patients suffered from short-term complications, and three patients underwent revision surgery due to graft non-union or pathological fracture. One patient suffered from local recurrence and underwent above-knee amputation. Three patients suffered from lung metastasis. MSTS at 12-month follow-up was 26.9.±5.87. Conclusion: Customized 3D-printed osteotomy PSIs provide surgeons with a novel tool for optimizing bone resection and reconstruction in long bones surgeries, thus minimizing overall tissue trauma and reducing the risk of damage to nervous and vascular structures. This study demonstrates that the use of PSIs has the potential to improve functional and oncological outcomes. We believe that this technique will become increasingly popular in the future as a widely applicable, highly accurate, cost-effective optimization tool.

3.
SICOT J ; 8: 20, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35608413

RESUMEN

OBJECTIVES: To examine the clinical feasibility and results of a multidisciplinary workflow, employing rapid three-dimensional (3D) scanning and modeling software along with a high-speed printer, for in-hospital production of patient-specific 3D-printed casts, for the treatment of non-displaced wrist and hand fractures. METHODS: Consenting adult patients admitted to the emergency department (ED) due to wrist or hand fractures between January and February 2021 were prospectively enrolled. The study participants underwent conversion of the standard plaster of Paris cast to a 3D-printed cast one week after the ED visit, and follow-up examinations were performed around two, six, and twelve weeks later. The primary objective was to examine the clinical feasibility in terms of complexity and length of the overall procedure. Secondary outcomes were patient-reported impressions and radiological results. RESULTS: Twenty patients (16 males, mean age 37 ± 13.1 years) were included. The entire printing workflow took a mean of 161 ± 8 min. All patients demonstrated clinical improvement and fracture union at final follow-up, with no pressure sores or loss of reduction. Patient-reported comfort and satisfaction rates were excellent. The mean Visual Analog Scale was 0.9 ± 1.1 and 0.6 ± 1, and the mean Disabilities of the Arm, Shoulder, and Hand score was 18.7 ± 9.5 and 7.6 ± 7.6 at 2 and 6 weeks after application of the 3D-printed cast, respectively. CONCLUSION: The in-hospital workflow was feasible and efficient, with excellent clinical and radiographic results and high patient satisfaction and comfort rates. Our medical center now routinely provides this cast option for non-displaced wrist and hand fractures. LEVEL OF EVIDENCE: IV, Therapeutic Study.

4.
J Pediatr Orthop ; 42(5): e427-e434, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35200209

RESUMEN

BACKGROUND: Three-dimensional (3D) virtual surgical planning technology has advanced applications in the correction of deformities of long bones by enabling the production of 3D stereolithographic models, patient-specific instruments and surgical-guiding templates. Herein, we describe the implementation of this technology in young patients who required a corrective osteotomy for a complex 3-plane (oblique plane) lower-limb deformity. PATIENTS AND METHODS: A total of 17 patients (9 males, average age 14.7 y) participated in this retrospective study. As part of preoperative planning, the patients' computerized tomographic images were imported into a post-processing software, and virtual 3D models were created by a segmentation process. Femoral and tibial models and cutting guides with locking points were designed according to the deformity correction plan. They were used for both planning and as intraoperative guides. Clinical parameters, such as blood loss and operative time were compared with a traditional surgical approach group. RESULTS: All osteotomies in the 3D group were executed with the use intraoperative customized cutting guides which matched the preoperative planning simulation and allowed easy fixation with prechosen plates. Surgical time was 101±6.2 minutes for the 3D group and 126.4±16.1 minutes for the control group. The respective intraoperative hemoglobin blood loss was 2.1±0.2 and 2.5+0.3 g/dL.Clinical and radiographic follow-up findings showed highly satisfactory alignment of the treated extremities in all 3D intervention cases, with an average time-to-bone union (excluding 2 neurofibromatosis 1 patients) of 10.3 weeks (range 6 to 20 wk). CONCLUSION: The use of 3D-printed models and patient-specific cutting guides with locking points improves the clinical outcomes of osteotomies in young patients with complex bone deformities of the lower limbs. LEVEL OF EVIDENCE: Level III.


Asunto(s)
Osteotomía , Cirugía Asistida por Computador , Adolescente , Humanos , Imagenología Tridimensional , Extremidad Inferior/cirugía , Masculino , Osteotomía/métodos , Impresión Tridimensional , Estudios Retrospectivos , Tibia/diagnóstico por imagen , Tibia/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...