Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37895078

RESUMEN

Mass spectrometry has been an essential technique for the investigation of the metabolic pathways of living organisms since its appearance at the beginning of the 20th century. Due to its capability to resolve isotopically labeled species, it can be applied together with stable isotope tracers to reveal the transformation of particular biologically relevant molecules. However, low-resolution techniques, which were used for decades, had limited capabilities for untargeted metabolomics, especially when a large number of compounds are labelled simultaneously. Such untargeted studies may provide new information about metabolism and can be performed with high-resolution mass spectrometry. Here, we demonstrate the capabilities of high-resolution mass spectrometry to obtain insights on the metabolism of a model plant, Lepidium sativum, germinated in D2O and H218O-enriched media. In particular, we demonstrated that in vivo labeling with heavy water helps to identify if a compound is being synthesized at a particular stage of germination or if it originates from seed content, and tandem mass spectrometry allows us to highlight the substructures with incorporated isotope labels. Additionally, we found in vivo labeling useful to distinguish between isomeric compounds with identical fragmentation patterns due to the differences in their formation rates that can be compared by the extent of heavy atom incorporation.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Óxido de Deuterio , Marcaje Isotópico/métodos , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Plantas/metabolismo , Isótopos/metabolismo
2.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37511483

RESUMEN

The administration of low doses of D2O to living organisms was used for decades for the investigation of metabolic pathways and for the measurement of the turnover rate for specific compounds. Usually, the investigation of the deuterium uptake in lipids is performed by measuring the deuteration level of the palmitic acid residue using GC-MS instruments, and to our knowledge, the application of the modern untargeted LC-MS/MS lipidomics approaches was only reported a few times. Here, we investigated the deuterium uptake for >500 lipids for 13 organs and body liquids of mice (brain, lung, heart, liver, kidney, spleen, plasma, urine, etc.) after 4 days of 100% D2O administration. The maximum deuteration level was observed in the liver, plasma, and lung, while in the brain and heart, the deuteration level was lower. Using MS/MS, we demonstrated the incorporation of deuterium in palmitic and stearic fragments in lipids (PC, PE, TAG, PG, etc.) but not in the corresponding free forms. Our results were analyzed based on the metabolic pathways of lipids.


Asunto(s)
Lipidómica , Espectrometría de Masas en Tándem , Ratones , Animales , Deuterio/química , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Lipidómica/métodos , Ácido Palmítico
3.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408942

RESUMEN

Mono- and polysaccharides are an essential part of every biological system. Identifying underivatized carbohydrates using mass spectrometry is still a challenge because carbohydrates have a low capacity for ionization. Normally, the intensities of protonated carbohydrates are relatively low, and in order to increase the corresponding peak height, researchers add Na+, K+, or NH4+to the solution. However, the fragmentation spectra of the corresponding ions are very poor. Based on this, reliably identifying carbohydrates in complex natural and biological objects can benefit frommeasuring additional molecular descriptors, especially those directly connected to the molecular structure. Previously, we reported that the application of the isotope exchange approach (H/D and 16O/18O) to high-resolution mass spectrometry can increase the reliability of identifying drug-like compounds. Carbohydrates possess many -OH and -COOH groups, making it reasonable to expect that the isotope exchange approach would have considerable potential for detecting carbohydrates. Here, we used a collection of standard carbohydrates to investigate the isotope exchange reaction (H/D and 16O/18O) in carbohydrates and estimate its analytical applications.


Asunto(s)
Carbohidratos , Espectrometría de Masa por Ionización de Electrospray , Carbohidratos/química , Óxido de Deuterio , Hexosas , Iones , Polisacáridos/química , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray/métodos
4.
ACS Omega ; 7(11): 9710-9719, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35350354

RESUMEN

Dissociation induced by the accumulation of internal energy via collisions of ions with neutral molecules is one of the most important fragmentation techniques in mass spectrometry (MS), and the identification of small singly charged molecules is based mainly on the consideration of the fragmentation spectrum. Many research studies have been dedicated to the creation of databases of experimentally measured tandem mass spectrometry (MS/MS) spectra (such as MzCloud, Metlin, etc.) and developing software for predicting MS/MS fragments in silico from the molecular structure (such as MetFrag, CFM-ID, CSI:FingerID, etc.). However, the fragmentation mechanisms and pathways are still not fully understood. One of the limiting obstacles is that protomers (positive ions protonated at different sites) produce different fragmentation spectra, and these spectra overlap in the case of the presence of different protomers. Here, we are proposing to use a combination of two powerful approaches: computing fragmentation trees that carry information of all consecutive fragmentations and consideration of the MS/MS data of isotopically labeled compounds. We have created PyFragMS-a web tool consisting of a database of annotated MS/MS spectra of isotopically labeled molecules (after H/D and/or 16O/18O exchange) and a collection of instruments for computing fragmentation trees for an arbitrary molecule. Using PyFragMS, we investigated how the site of protonation influences the fragmentation pathway for small molecules. Also, PyFragMS offers capabilities for performing database search when MS/MS data of the isotopically labeled compounds are taken into account.

5.
Anal Bioanal Chem ; 414(8): 2537-2543, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35103806

RESUMEN

The task of multipurpose analysis of biological samples and identification of individual compounds in them is actual for many organizations in various fields; the results of such analyses can affect lives. The most frequently used, most accurate, and highly sensitive method used for this kind of analysis is the combination of gas/liquid chromatography and high-resolution mass spectrometry. However, in some areas, it is necessary to increase the reliability of compound identification. In this paper, we present a method that combines the reaction of oxygen isotope exchange with mass spectrometry; the method allows to increase the reliability of identification of individual compounds. Oxygen isotope exchange reaction is a "selective" one, which means that not all oxygen present in the molecule can exchange, but only in certain functional groups. Thus, by the number of isotope exchanges that have occurred in this molecule, the right structural formula might be more accurately chosen. The method was tested both on pure pharmaceutical substances and on real human urine samples. In both cases, the effectiveness of the method was shown: the number of expected exchanges in known substances coincided with the experimental one, and from several possible structures of unknown substances, the correct one was chosen based on the number of isotope exchanges.


Asunto(s)
Oxígeno , Cromatografía de Gases y Espectrometría de Masas , Humanos , Espectrometría de Masas/métodos , Isótopos de Oxígeno , Reproducibilidad de los Resultados
6.
J Am Soc Mass Spectrom ; 33(2): 390-398, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35077167

RESUMEN

LC-MS is a key technique for the identification of small molecules in complex samples. Accurate mass, retention time, and fragmentation spectra from LC-MS experiments are compared to reference values for pure chemical standards. However, this information is often unavailable or insufficient, leading to an assignment to a list of candidates instead of a single hit; therefore, additional features are desired to filter candidates. One such promising feature is the number of specific functional groups of a molecule that can be counted via derivatization or isotope-exchange techniques. Hydrogen/deuterium exchange (HDX) is the most widespread implementation of isotope exchange for mass spectrometry, while oxygen 16O/18O exchange is not applied as frequently as HDX. Nevertheless, it is known that some functional groups may be selectively exchanged in 18O enriched media. Here, we propose an implementation of 16O/18O isotope exchange to highlight various functional groups. We evaluated the possibility of using the number of exchanged oxygen atoms as a descriptor to filter database candidates in untargeted LC-MS-based workflows. It was shown that 16O/18O exchange provides 62% (median, n = 45) search space reduction for a panel of drug molecules. Additionally, it was demonstrated that studying the fragmentation spectra after 16O/18O can aid in eliminating false positives and, in some cases, help to annotate fragments formed with water traces in the collisional cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...