Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1106576, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37360721

RESUMEN

Cultivation studies in specialty crop optimization utilize models to estimate the fresh and dry mass yield. However, the spectral distribution and photon flux density (µmol m-2 s-1) affect plant photosynthetic rate and morphology, which is usually not incorporated in plant growth models. In this study, using data for indoor-grown lettuce (Lactuca sativa) cultivated under different light spectra, a mathematical model that incorporates these effects is presented. Different experimental cases are used to obtain a modified quantum use efficiency coefficient that varies with the spectral distribution. Several models for this coefficient are fitted using experimental data. Comparing the accuracy of these models, a simple first- or second-order linear model for light-use efficiency coefficient has about 6 to 8 percent uncertainty, while a fourth-order model has a 2 percent average error in prediction. In addition, normalizing overall spectral distribution leads to a more accurate prediction of the investigated parameter. A novel mathematical model based on normalized spectral irradiance integrated over wavelength for photosynthetically active radiation (PAR) wavebands and the far-red waveband is presented in this study. It accurately predicts lettuce dry mass grown indoors under different light spectra.

2.
Plants (Basel) ; 12(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36903988

RESUMEN

For indoor crop production, blue + red light-emitting diodes (LEDs) have high photosynthetic efficacy but create pink or purple hues unsuitable for workers to inspect crops. Adding green light to blue + red light forms a broad spectrum (white light), which is created by: phosphor-converted blue LEDs that cast photons with longer wavelengths, or a combination of blue, green, and red LEDs. A broad spectrum typically has a lower energy efficiency than dichromatic blue + red light but increases color rendering and creates a visually pleasing work environment. Lettuce growth depends on the interactions of blue and green light, but it is not clear how phosphor-converted broad spectra, with or without supplemental blue and red light, influence crop growth and quality. We grew red-leaf lettuce 'Rouxai' in an indoor deep-flow hydroponic system at 22 °C air temperature and ambient CO2. Upon germination, plants received six LED treatments delivering different blue fractions (from 7% to 35%) but the same total photon flux density (400 to 799 nm) of 180 µmol·m-2·s-1 under a 20 h photoperiod. The six LED treatments were: (1) warm white (WW180); (2) mint white (MW180); (3) MW100 + blue10 + red70; (4) blue20 + green60 + red100; (5) MW100 + blue50 + red30; and (6) blue60 + green60 + red60. Subscripts denote photon flux densities in µmol·m-2·s-1. Treatments 3 and 4 had similar blue, green, and red photon flux densities, as did treatments 5 and 6. At the harvest of mature plants, lettuce biomass, morphology, and color were similar under WW180 and MW180, which had different green and red fractions but similar blue fractions. As the blue fraction in broad spectra increased, shoot fresh mass, shoot dry mass, leaf number, leaf size, and plant diameter generally decreased and red leaf coloration intensified. Compared to blue + green + red LEDs, white LEDs supplemented with blue + red LEDs had similar effects on lettuce when they delivered similar blue, green, and red photon flux densities. We conclude that the blue photon flux density in broad spectra predominantly controls lettuce biomass, morphology, and coloration.

3.
Sci Rep ; 13(1): 1903, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732574

RESUMEN

Covering greenhouses and agricultural fields with photovoltaics has the potential to create multipurpose agricultural systems that generate revenue through conventional crop production as well as sustainable electrical energy. In this work, we evaluate the effects of wavelength-selective cutoffs of visible and near-infrared (biologically active) radiation using transparent photovoltaic (TPV) absorbers on the growth of three diverse, representative, and economically important crops: petunia, basil, and tomato. Despite the differences in TPV harvester absorption spectra, photon transmission of photosynthetically active radiation (PAR; 400-700 nm) is the most dominant predictor of crop yield and quality. This indicates that different wavebands of blue, red, and green are essentially equally important to these plants. When the average photosynthetic daily light integral is > 12 mol m-2 d-1, basil and petunia yield and quality is acceptable for commercial production. However, even modest decreases in TPV transmission of PAR reduces tomato growth and fruit yield. These results identify crop-specific design requirements that exist for TPV harvester transmission and the necessity to maximize transmission of PAR to create the most broadly applicable TPV greenhouse harvesters for diverse crops and geographic locations. We determine that the deployment of 10% power conversion efficiency (PCE) plant-optimized TPVs over approximately 10% of total agricultural and pasture land in the U.S. would generate 7 TW, nearly double the entire energy demand of the U.S.

4.
PLoS One ; 18(2): e0281996, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36821557

RESUMEN

Although green (G, 500 to 600 nm) and far-red (FR, 700 to 800 nm) light play important roles in regulating plant growth and development, they are often considered less useful at stimulating photosynthesis than red (R, 600 to 700 nm) and blue (B, 400 to 500 nm) light. Based on this perception, approaches to modifying the transmission of greenhouse glazing materials include (1) conversion of G photons from sunlight into R photons and (2) exclusion of the near-infrared (>700 nm) fraction of sunlight. We evaluated these approaches using simulated scenarios with light-emitting diodes to determine how partial and complete substitution of G with R light and exclusion of FR light affected the growth of lettuce and tomato grown indoors. The substitution of G with R light had little or no effect on fresh and dry mass of tomato. However, with the presence of FR light, fresh and dry mass of lettuce increased by 22-26% as G light was increasingly substituted with R light. In tomato, excluding FR inhibited plant height, leaf area, and dry mass by 60-71%, 10-37%, and 20-44%, respectively. Similarly, in lettuce, excluding FR inhibited plant diameter, leaf length, and dry mass by 15-23%, 23-33%, or 28-48%, respectively. We conclude that the spectral conversion of G-to-R photons can promote plant growth in at least some crop species, such as lettuce, while the exclusion of FR decreases crop growth and yield.


Asunto(s)
Luz , Solanum lycopersicum , Fotones , Fotosíntesis , Lactuca , Películas Cinematográficas , Hojas de la Planta
5.
Plants (Basel) ; 10(3)2021 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-33799394

RESUMEN

The photon flux density (PFD) and spectrum regulate the growth, quality attributes, and postharvest physiology of leafy vegetables grown indoors. However, limited information is available on how a photon spectrum enriched with a broad range of different wavebands regulates these factors. To determine this, we grew baby-leaf lettuce 'Rouxai' under a PFD of 200 µmol m-2 s-1 provided by warm-white (WW; control) light-emitting diodes (LEDs) supplemented with either 30 µmol m-2 s-1 of ultraviolet-A (+UV30) or 50 µmol m-2 s-1 of blue (+B50), green (+G50), red (+R50), or WW (+WW50) light. We then quantified growth attributes and accumulated secondary metabolites at harvest and during storage in darkness at 5 °C. Additional +G50 light increased shoot fresh and dry weight by 53% and 59% compared to the control. Relative chlorophyll concentration increased under +UV30, +G50, and especially +B50. At harvest, +B50 increased total phenolic content (TPC) by 25% and anthocyanin content (TAC) by 2.0-fold. Additionally, +G50 increased antiradical activity (DPPH) by 29%. After each day of storage, TPC decreased by 2.9 to 7.1% and DPPH by 3.0 to 6.2%, while TAC degradation was less pronounced. Principal component analysis indicated a distinct effect of +G50 on the lettuce at harvest. However, concentrations of metabolites before and during storage were usually greatest under the +B50 and +R50 treatments.

6.
Nat Food ; 2(6): 434-441, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37118233

RESUMEN

Improving photosynthesis and light capture increases crop yield and paves a sustainable way to meet the growing global food demand. Here we introduce a spectral-shifting microphotonic thin film as a greenhouse envelope that can be scalably manufactured for augmented photosynthesis. By breaking the intrinsic propagation symmetry of light, the photonic microstructures can extract 89% of the internally generated light and deliver most of that in one direction towards photosynthetic organisms. The microphotonic film augments lettuce production by more than 20% in both indoor facilities with electric lighting and in a greenhouse with natural sunlight, offering the possibility of increasing crop production efficiency in controlled environments.

7.
Front Plant Sci ; 11: 571788, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193506

RESUMEN

Lighting is typically static for indoor production of leafy greens. However, temporal spectrum differentiation for distinct growth phases can potentially control age-specific desirable traits. Spectral effects can be persistent yet dynamic as plants mature, necessitating characterization of time-dependent responses. We grew red-leaf lettuce (Lactuca sativa L.) "Rouxai" in a growth room at 23°C and under a 20-h photoperiod created by warm-white (WW), blue (B; peak = 449 nm), green (G; peak = 526 nm), red (R; peak = 664 nm), and/or far-red (FR; peak = 733 nm) light-emitting diodes. From day 0 to 11, plants received six static lighting treatments with the same total photon flux density (400-800 nm): WW180, R180, B20R160, B20G60R100, B20R100FR60, or B180 (subscripts denote photon flux densities in µmol⋅m-2⋅s-1). On day 11, plants grown under each of the six treatments were transferred to all treatments, which created 36 temporal spectrum alternations. Plant growth, morphology, and coloration were measured on days 11 and 25. Increasing B radiation from 0 to 100% in static treatments decreased shoot fresh and dry weights and increased foliage redness of seedlings and mature plants. Compared to B20R160, B20R100FR60 increased shoot fresh weight, but not dry weight, on both days. However, other phenotypic responses under static treatments changed over time. For example, leaf length under B180 was 35% lower on day 11 but similar on day 25 compared to that under R180. In the B20 background, substituting G60 for R radiation did not influence shoot weight on day 11 but decreased it by 19% on day 25. When plants were switched from one treatment to another on day 11, the treatments applied before day 11 influenced final shoot weight and, to a lesser extent, leaf length and foliage coloration on day 25. In comparison, effects of the treatments applied after day 11 were more pronounced. We conclude some phenotypic responses to light quality depend on time and sequential light quality treatments had cumulative effects on lettuce growth. The temporal complexity of spectral responses is critical in photobiological research and creates opportunities for time-specific spectrum delivery to optimize crop characteristics.

8.
Physiol Plant ; 166(3): 762-771, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30187495

RESUMEN

Photoperiodic lighting can promote flowering of long-day plants (LDPs) and inhibit flowering of short-day plants (SDPs). Red (R) and far-red (FR) light regulate flowering through phytochromes, whereas blue light does so primarily through cryptochromes. In contrast, the role of green light in photoperiodic regulation of flowering has been inconsistent in previous studies. We grew four LDP species (two petunia cultivars, ageratum, snapdragon and Arabidopsis) and two SDP species (three chrysanthemum cultivars and marigold) in a greenhouse under truncated 9-h short days with or without 7-h day-extension lighting from green light (peak = 521 nm) at 0, 2, 13 or 25 µmol m-2  s-1 or R + white (W) + FR light at 2 µmol m-2  s-1 . Increasing the green photon flux density from 0 to 25 µmol m-2  s-1 accelerated flowering of all LDPs and delayed flowering of all SDPs. Petunia flowered similarly fast under R + W + FR light and moderate green light but was shorter and developed more branches under green light. To be as effective as R + W + FR light, saturation green photon flux densities were 2 µmol m-2  s-1 for LDP ageratum and SDP marigold and 13 µmol m-2  s-1 for LDP petunia. Snapdragon was the least sensitive to green light. In Arabidopsis, cryptochrome 2 mediated promotion of flowering under moderate green light, whereas both phytochrome B and cryptochrome 2 mediated that under R + W + FR light. We conclude that 7-h day-extension lighting from green light-emitting diodes can control flowering of photoperiodic ornamentals and that in Arabidopsis, cryptochrome 2 mediates promotion of flowering under green light.


Asunto(s)
Criptocromos/metabolismo , Flores/metabolismo , Luz , Ageratum/metabolismo , Ageratum/efectos de la radiación , Antirrhinum/metabolismo , Antirrhinum/efectos de la radiación , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis , Chrysanthemum/metabolismo , Chrysanthemum/efectos de la radiación , Flores/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Fotones , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/efectos de la radiación
9.
PLoS One ; 13(8): e0202386, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30114282

RESUMEN

Arrays of blue (B, 400-500 nm) and red (R, 600-700 nm) light-emitting diodes (LEDs) used for plant growth applications make visual assessment of plants difficult compared to a broad (white, W) spectrum. Although W LEDs are sometimes used in horticultural lighting fixtures, little research has been published using them for sole-source lighting. We grew seedlings of begonia (Begonia ×semperflorens), geranium (Pelargonium ×horturum), petunia (Petunia ×hybrida), and snapdragon (Antirrhinum majus) at 20°C under six sole-source LED lighting treatments with a photosynthetic photon flux density (PPFD) of 160 µmol∙m-2∙s-1 using B (peak = 447 nm), green (G, peak = 531 nm), R (peak = 660 nm), and/or mint W (MW, peak = 558 nm) LEDs that emitted 15% B, 59% G, and 26% R plus 6 µmol∙m-2∙s-1 of far-red radiation. The lighting treatments (with percentage from each LED in subscript) were MW100, MW75R25, MW45R55, MW25R75, B15R85, and B20G40R40. At the transplant stage, total leaf area, and fresh and dry weight were similar among treatments in all species. Surprisingly, when petunia seedlings were grown longer (beyond the transplant stage) under sole-source lighting treatments, the primary stem elongated and had flower buds earlier under MW100 and MW75R25 compared to under B15R85. The color rendering index of MW75R25 and MW45R55 were 72, and 77, respectively, which was higher than those of other treatments, which were ≤64. While photosynthetic photon efficacy of B15R85 (2.25 µmol∙J-1) was higher than the W light treatments (1.51-2.13 µmol∙J-1), the dry weight gain per unit electric energy consumption (in g∙kWh-1) of B15R85 was similar to those of MW25R75, MW45R55, and MW75R25 in three species. We conclude that compared to B+R radiation, W radiation had generally similar effects on seedling growth at the same PPFD with similar electric energy consumption, and improved the visual color quality of sole-source lighting.


Asunto(s)
Antirrhinum/crecimiento & desarrollo , Begoniaceae/crecimiento & desarrollo , Geranium/crecimiento & desarrollo , Petunia/crecimiento & desarrollo , Antirrhinum/fisiología , Begoniaceae/fisiología , Geranium/fisiología , Luz , Iluminación , Petunia/fisiología , Fotones , Fotosíntesis , Desarrollo de la Planta , Plantones/crecimiento & desarrollo , Plantones/fisiología
10.
J Exp Bot ; 57(15): 4043-9, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17075080

RESUMEN

Phalaenopsis orchids are among the most valuable potted flowering crops commercially produced throughout the world because of their long flower life and ease of crop scheduling to meet specific market dates. During commercial production, Phalaenopsis are usually grown at an air temperature > or =28 degrees C to inhibit flower initiation, and a cooler night than day temperature regimen (e.g. 25/20 degrees C day/night) is used to induce flowering. However, the specific effect of day and night temperature on flower initiation has not been well described, and the reported requirement for a diurnal temperature fluctuation to elicit flowering is unclear. Two Phalaenopsis clones were grown in glass greenhouse compartments with constant temperature set points of 14, 17, 20, 23, 26, or 29 degrees C and fluctuating day/night (12 h/12 h) temperatures of 20/14, 23/17, 26/14, 26/20, 29/17, or 29/23 degrees C. The photoperiod was 12 h, and the maximum irradiance was controlled to < or =150 micromol m(-2) s(-1). After 20 weeks, > or =80% of plants of both clones had a visible inflorescence when grown at constant 14, 17, 20, or 23 degrees C and at fluctuating day/night temperatures of 20/14 degrees C or 23/17 degrees C. None of the plants were reproductive within 20 weeks when grown at a constant 29 degrees C or at 29/17 degrees C or 29/23 degrees C day/night temperature regimens. The number of inflorescences per plant and the number of flower buds on the first inflorescence were greatest when the average daily temperature was 14 degrees C or 17 degrees C. These results indicate that a day/night fluctuation in temperature is not required for inflorescence initiation in these two Phalaenopsis clones. Furthermore, the inhibition of flowering when the day temperature was 29 degrees C and the night temperature was 17 degrees C or 23 degrees C suggests that a warm day temperature inhibits flower initiation in Phalaenopsis.


Asunto(s)
Ritmo Circadiano , Orchidaceae/crecimiento & desarrollo , Temperatura , Flores/crecimiento & desarrollo
11.
Physiol Plant ; 112(3): 433-441, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11473702

RESUMEN

Intermediate-day plants (IDP) flower most rapidly and completely under intermediate photoperiods (e.g., 12-14 h of light), but few species have been identified and their flowering responses are not well understood. We identified Echinacea purpurea Moench as an IDP and, based on our results, propose a novel mechanism for flowering of IDP. Two genotypes of E. purpurea ('Bravado' and 'Magnus') flowered most completely (>/=79%) and rapidly and at the youngest physiological age under intermediate photoperiods of 13-15 h. Few (/=230% as the photoperiod or NI duration increased, until plants received a saturating duration (at 14 or 1 h, respectively). Flowering was inhibited when 16-h photoperiods were deficient in red (R, 600-700 nm) light, and was promoted when photoperiods were deficient in far-red (FR, 700-800 nm) light. Because of our results, we propose the flowering behavior of IDP such as E. purpurea is composed of two mechanisms: a light-dependent response operating through light-labile (type I) phytochrome in which flowering is inhibited by an LD, and a light-stable (type II) phytochrome (i.e., phyB, D and E) response in which flowering is promoted by a short-night.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...