Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 12(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38540271

RESUMEN

During tumorigenesis, miRNAs with unbalanced expression profiles can increase the threat of disease progression. Here, we focus on the role of miR-331-5p in the pathogenesis of thyroid cancer (TC). In vitro studies were conducted using TC cell lines after the forced expression and silencing of miR-331-5p. Cell proliferation and viability were analyzed via cell counts and colorimetric assays. Cell motility was analyzed via wound healing assays, Transwell migration and invasion assays, and Matrigel Matrix assays. The putative targets of miR-331-5p were unveiled via label-free proteomic screening and then verified using Western blot and luciferase assays. Expression studies were conducted by interrogating The Cancer Genome Atlas (TCGA). We found that ectopic miR-331-5p expression reduces TC cell motility, while miR-331-5p silencing induces the opposite phenotype. Proteomic screening revealed eight putative downregulated targets of miR-331-5p, among which BID was confirmed as a direct target. TCGA data showed the downregulation of miR-331-5p and the upregulation of BID in TC tissues. In summary, deregulation of the miR-331-5p/BID axis could enhance the aggressiveness of TC cell lines, providing new insights into the mechanisms of the progression of this disease and suggesting a potential role of the component factors as possible biomarkers in TC tissues.

2.
Nanomaterials (Basel) ; 13(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36985974

RESUMEN

The emergence of multidrug-resistant bacteria represents a growing threat to public health, and it calls for the development of alternative antibacterial approaches not based on antibiotics. Here, we propose vertically aligned carbon nanotubes (VA-CNTs), with a properly designed nanomorphology, as effective platforms to kill bacteria. We show, via a combination of microscopic and spectroscopic techniques, the ability to tailor the topography of VA-CNTs, in a controlled and time-efficient manner, by means of plasma etching processes. Three different varieties of VA-CNTs were investigated, in terms of antibacterial and antibiofilm activity, against Pseudomonas aeruginosa and Staphylococcus aureus: one as-grown variety and two varieties receiving different etching treatments. The highest reduction in cell viability (100% and 97% for P. aeruginosa and S. aureus, respectively) was observed for the VA-CNTs modified using Ar and O2 as an etching gas, thus identifying the best configuration for a VA-CNT-based surface to inactivate both planktonic and biofilm infections. Additionally, we demonstrate that the powerful antibacterial activity of VA-CNTs is determined by a synergistic effect of both mechanical injuries and ROS production. The possibility of achieving a bacterial inactivation close to 100%, by modulating the physico-chemical features of VA-CNTs, opens up new opportunities for the design of self-cleaning surfaces, preventing the formation of microbial colonies.

3.
Nanomaterials (Basel) ; 14(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38202532

RESUMEN

Highly aligned multi-wall carbon nanotubes were investigated with scanning electron microscopy (SEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) before and after bombardment performed using noble gas ions of different masses (argon, neon and helium), in an ultra-high-vacuum (UHV) environment. Ion irradiation leads to change in morphology, deformation of the carbon (C) honeycomb lattice and different structural defects in multi-wall carbon nanotubes. One of the major effects is the production of bond distortions, as determined by micro-Raman and micro-X-ray photoelectron spectroscopy. We observe an increase in sp3 distorted bonds at higher binding energy with respect to the expected sp2 associated signal of the carbon 1s core level, and increase in dangling bonds. Furthermore, the surface damage as determined by the X-ray photoelectron spectroscopy carbon 1s core level is equivalent upon bombarding with ions of different masses, while the impact and density of defects in the lattice of the MWCNTs as determined by micro-Raman are dependent on the bombarding ion mass; heavier for helium ions, lighter for argon ions. These results on the controlled increase in sp3 distorted bonds, as created on the multi-wall carbon nanotubes, open new functionalization prospects to improve and increase atomic hydrogen uptake on ion-bombarded multi-wall carbon nanotubes.

5.
ACS Appl Mater Interfaces ; 14(10): 12766-12776, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35254812

RESUMEN

Nowadays, a wide number of applications based on magnetic materials rely on the properties arising at the interface between different layers in complex heterostructures engineered at the nanoscale. In ferromagnetic/heavy metal multilayers, such as the [Co/Pt]N and [Co/Pd]N systems, the magnetic proximity effect was demonstrated to be asymmetric, thus inducing a magnetic moment on the Pt (Pd) layer that is typically higher at the top Co/Pt(Pd) interface. In this work, advanced spectroscopic and imaging techniques were combined with theoretical approaches to clarify the origin of this asymmetry both in Co/Pt trilayers and, for the first time, in multilayer systems that are more relevant for practical applications. The different magnetic moment induced at the Co/Pt interfaces was correlated to the microstructural features that are in turn affected by the growth processes that induce a different intermixing during the film deposition, thus influencing the interface magnetic profile.

6.
Circ Cardiovasc Imaging ; 14(10): e012774, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34587749

RESUMEN

BACKGROUND: The functional adaptation of the right ventricle (RV) to the different degrees of left ventricular (LV) dysfunction remains to be clarified. We sought to (1) assess the changes in RV contraction pattern associated with the reduction of LV ejection fraction (EF) and (2) analyze whether the assessment of RV longitudinal, radial, and anteroposterior motion components of total RVEF adds prognostic value. METHODS: Consecutive patients with left-sided heart disease who underwent clinically indicated transthoracic echocardiography were enrolled in a single-center prospective observational study. Adverse outcome was defined as heart failure hospitalization or cardiac death. Cross-sectional analysis using the baseline 3-dimensional echocardiography studies was performed to quantify the relative contribution of the longitudinal, radial, and anteroposterior motion components to total RVEF. RESULTS: We studied 292 patients and followed them for 6.7±2.2 years. In patients with mildly and moderately reduced LVEF, the longitudinal and the anteroposterior components of RVEF decreased significantly, while the radial component increased resulting in preserved total RVEF (RVEF: 50% [46%-54%] versus 47% [44%-52%] versus 46% [42%-49%] in patients with no, mild, or moderate LV dysfunction, respectively; data presented as median and interquartile range). In patients with severe LV systolic dysfunction (n=34), a reduction in all 3 RV motion components led to a significant drop in RVEF (30% [25%-39%], P<0.001). In patients with normal RVEF (>45%), the anteroposterior component of total RVEF was a significant and independent predictor of outcome (hazard ratio, 0.960 [CI, 0.925-0.997], P<0.001). CONCLUSIONS: In patients with left-sided heart disease, there is a significant remodeling of the RV associated with preservation of the RVEF in patients with mild or moderate LV dysfunction. In patients with normal RVEF, the measurement of the anteroposterior component of RV motion provided independent prognostic value.


Asunto(s)
Ventrículos Cardíacos/fisiopatología , Contracción Miocárdica/fisiología , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda/fisiología , Ecocardiografía Tridimensional/métodos , Femenino , Estudios de Seguimiento , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Sístole , Factores de Tiempo , Disfunción Ventricular Izquierda/diagnóstico
7.
Nanotechnology ; 32(3): 035707, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33017812

RESUMEN

Graphane is formed by bonding hydrogen (and deuterium) atoms to carbon atoms in the graphene mesh, with modification from the pure planar sp2 bonding towards an sp3 configuration. Atomic hydrogen (H) and deuterium (D) bonding with C atoms in fully free-standing nano porous graphene (NPG) is achieved, by exploiting low-energy proton (or deuteron) non-destructive irradiation, with unprecedented minimal introduction of defects, as determined by Raman spectroscopy and by the C 1s core level lineshape analysis. Evidence of the H- (or D-) NPG bond formation is obtained by bringing to light the emergence of a H- (or D-) related sp3-distorted component in the C 1s core level, clear fingerprint of H-C (or D-C) covalent bonding. The H (or D) bonding with the C atoms of free-standing graphene reaches more than 1/4 (or 1/3) at% coverage. This non-destructive H-NPG (or D-NPG) chemisorption is very stable at high temperatures up to about 800 K, as monitored by Raman and x-ray photoelectron spectroscopy, with complete healing and restoring of clean graphene above 920 K. The excellent chemical and temperature stability of H- (and D-) NPG opens the way not only towards the formation of semiconducting graphane on large-scale samples, but also to stable graphene functionalisation enabling futuristic applications in advanced detectors for the ß-spectrum analysis.

8.
Expert Rev Cardiovasc Ther ; 17(11): 801-815, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31770493

RESUMEN

Introduction: Quantification of left ventricular (LV) size and function represents the most frequent indication for an echocardiographic study. New echocardiographic techniques have been developed over the last decades in an attempt to provide a more comprehensive, accurate, and reproducible assessment of LV function.Areas covered: Although two-dimensional echocardiography (2DE) is the recommended imaging modality to evaluate the LV, three-dimensional echocardiography (3DE) has proven to be more accurate, by avoiding geometric assumptions about LV geometry, and to have incremental value for outcome prediction in comparison to conventional 2DE. LV shape (sphericity) and mass are actually measured with 3DE. Myocardial deformation analysis using 3DE can early detect subclinical LV dysfunction, before any detectable change in LV ejection fraction.Expert opinion: 3DE eliminates the errors associated with foreshortening and geometric assumptions inherent to 2DE and 3DE measurements approach very closely those obtained by CMR (the current reference modality), while maintaining the unique clinical advantage of a safe, highly cost/effective, portable imaging technique, available to the cardiologist at bedside to translate immediately the echocardiography findings into the clinical decision-making process.


Asunto(s)
Ecocardiografía Tridimensional/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Disfunción Ventricular Izquierda/diagnóstico por imagen , Humanos , Reproducibilidad de los Resultados , Volumen Sistólico , Función Ventricular Izquierda
9.
J Phys Chem A ; 113(52): 15193-7, 2009 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-19874034

RESUMEN

The electronic properties of the pyrrole/Al(100) interface have been investigated from both a theoretical and experimental point of view. Electron energy loss spectroscopy (EELS) in specular reflection geometry does not reveal modification of the electronic structure of the molecule when adsorbed on the Al surface. EELS results and the low desorption temperature of pyrrole indicate a weak molecule/metal interaction. Ab initio calculations in the framework of the single-particle density functional theory within the local density approximation was used to investigate the adsorption energy and geometry. The low adsorption energy, -0.51 eV per molecule, and the high N-Al distance, 1.98 A, confirm the weak interaction of pyrrole adsorbed on the Al surface.


Asunto(s)
Aluminio/química , Modelos Moleculares , Pirroles/química , Teoría Cuántica , Adsorción , Conformación Molecular , Propiedades de Superficie
10.
J Chem Phys ; 126(12): 124709, 2007 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-17411154

RESUMEN

An experimental and theoretical study of the electronic structure of copper phthalocyanine (CuPc) molecule is presented. We performed x-ray photoemission spectroscopy (XPS) and photoabsorption [x-ray absorption near-edge structure (XANES)] gas phase experiments and we compared the results with self-consistent field, density functional theory (DFT), and static-exchange theoretical calculations. In addition, ultraviolet photoelectron spectra (UPS) allowed disentangling several outer molecular orbitals. A detailed study of the two highest occupied orbitals (having a(1u) and b(1g) symmetries) is presented: the high energy resolution available for UPS measurements allowed resolving an extra feature assigned to vibrational stretching in the pyrrole rings. This observation, together with the computed DFT electron density distributions of the outer valence orbitals, suggests that the a(1u) orbital (the highest occupied molecular orbital) is mainly localized on the carbon atoms of pyrrole rings and it is doubly occupied, while the b(1g) orbital, singly occupied, is mainly localized on the Cu atom. Ab initio calculations of XPS and XANES spectra at carbon K edge of CuPc are also presented. The comparison between experiment and theory revealed that, in spite of being formally not equivalent, carbon atoms of the benzene rings experience a similar electronic environment. Carbon K-edge absorption spectra were interpreted in terms of different contributions coming from chemically shifted C 1s orbitals of the nonequivalent carbon atoms on the inner ring of the molecule formed by the sequence of CN bonds and on the benzene rings, respectively, and also in terms of different electronic distributions of the excited lowest unoccupied molecular orbital (LUMO) and LUMO+1. In particular, the degenerate LUMO appears to be mostly localized on the inner pyrrole ring.

11.
Phys Rev Lett ; 94(3): 038302, 2005 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-15698330

RESUMEN

The collision statistics of the energy dissipation of Auger and photoelectrons emitted from an amorphized Si(100) surface is studied by measuring the Si 2p photoelectron line as well as the first plasmon loss peak in coincidence with the Si-LVV Auger transition and the associated first plasmon loss. The Si 2p plasmon intensity decreases when measured in coincidence with the Si-LVV peak. If measured in coincidence with the Si-LVV plasmon the decrease is significantly smaller. The results agree quantitatively with calculations accounting for surface, volume, and intrinsic losses as well as elastic scattering in a random medium. In this way one can determine the average emission depth of individual electrons by means of Auger photoelectron coincidence spectroscopy, which therefore constitutes a unique tool to investigate interfaces at the nanoscale level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...