Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 630(8015): 59-63, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750357

RESUMEN

Ab initio calculations have an essential role in our fundamental understanding of quantum many-body systems across many subfields, from strongly correlated fermions1-3 to quantum chemistry4-6 and from atomic and molecular systems7-9 to nuclear physics10-14. One of the primary challenges is to perform accurate calculations for systems where the interactions may be complicated and difficult for the chosen computational method to handle. Here we address the problem by introducing an approach called wavefunction matching. Wavefunction matching transforms the interaction between particles so that the wavefunctions up to some finite range match that of an easily computable interaction. This allows for calculations of systems that would otherwise be impossible owing to problems such as Monte Carlo sign cancellations. We apply the method to lattice Monte Carlo simulations15,16 of light nuclei, medium-mass nuclei, neutron matter and nuclear matter. We use high-fidelity chiral effective field theory interactions17,18 and find good agreement with empirical data. These results are accompanied by insights on the nuclear interactions that may help to resolve long-standing challenges in accurately reproducing nuclear binding energies, charge radii and nuclear-matter saturation in ab initio calculations19,20.

2.
Phys Rev Lett ; 119(22): 222505, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29286765

RESUMEN

Nuclear clustering describes the appearance of structures resembling smaller nuclei such as alpha particles (^{4}He nuclei) within the interior of a larger nucleus. In this Letter, we present lattice Monte Carlo calculations based on chiral effective field theory for the ground states of helium, beryllium, carbon, and oxygen isotopes. By computing model-independent measures that probe three- and four-nucleon correlations at short distances, we determine the shape of the alpha clusters and the entanglement of nucleons comprising each alpha cluster with the outside medium. We also introduce a new computational approach called the pinhole algorithm, which solves a long-standing deficiency of auxiliary-field Monte Carlo simulations in computing density correlations relative to the center of mass. We use the pinhole algorithm to determine the proton and neutron density distributions and the geometry of cluster correlations in ^{12}C, ^{14}C, and ^{16}C. The structural similarities among the carbon isotopes suggest that ^{14}C and ^{16}C have excitations analogous to the well-known Hoyle state resonance in ^{12}C.

3.
Phys Rev Lett ; 117(13): 132501, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27715077

RESUMEN

How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (^{4}He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. This insight should be useful in improving calculations of nuclear structure and important astrophysical reactions involving alpha capture on nuclei. Our findings also provide a tool to probe the structure of alpha cluster states such as the Hoyle state responsible for the production of carbon in red giant stars and point to a connection between nuclear states and the universal physics of bosons at large scattering length.

4.
Nature ; 528(7580): 111-4, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26632590

RESUMEN

Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of quarks and gluons.

5.
Phys Rev Lett ; 112(10): 102501, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24679283

RESUMEN

We present ab initio lattice calculations of the low-energy even-parity states of 16O using chiral nuclear effective field theory. We find good agreement with the empirical energy spectrum, and with the electromagnetic properties and transition rates. For the ground state, we find that the nucleons are arranged in a tetrahedral configuration of alpha clusters. For the first excited spin-0 state, we find that the predominant structure is a square configuration of alpha clusters, with rotational excitations that include the first spin-2 state.

6.
Phys Rev Lett ; 111(3): 032502, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23909313

RESUMEN

We outline a general method for computing nuclear capture reactions on the lattice. The method consists of two major parts. In this study we detail the second part which consists of calculating an effective two-body capture reaction on the lattice at finite volume. We solve this problem by calculating the two-point Green's function using an infrared regulator and the capture amplitude to a two-body bound state. We demonstrate the details of this method by calculating on the lattice the leading M1 contribution to the radiative neutron capture on proton at low energies using pionless effective field theory. We find good agreement with exact continuum results. The approach we outline here can be used in a wide range of applications including few-body reactions in cold atomic systems and hadronic reactions in lattice quantum chromodynamics.

7.
Phys Rev Lett ; 106(22): 222501, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21702595

RESUMEN

The radiative neutron capture on lithium-7 is calculated model independently using a low-energy halo effective field theory. The cross section is expressed in terms of scattering parameters directly related to the S-matrix elements. It depends on the poorly known p-wave effective range parameter r(1). This constitutes the largest uncertainty in traditional model calculations. It is explicitly demonstrated by comparing with potential model calculations. A single parameter fit describes the low-energy data extremely well and yields r(1)≈-1.47 fm(-1).

8.
Phys Rev Lett ; 98(9): 090403, 2007 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-17359142

RESUMEN

Thermodynamic properties of a Fermi system close to the unitarity limit, where the 2-body scattering length a approaches +/-infinity, are studied in the high temperature Boltzmann regime. For dilute systems the virial expansion coefficients in the Boltzmann regime are expected, from general arguments, to be universal. A model independent finite temperature T calculation of the third virial coefficient b3(T) is presented. At the unitarity limit, b3infinity approximately 1.11 is a universal number. The energy density up to the third virial expansion is derived. These calculations are of interest in dilute neutron matter and could be tested in current atomic experiments on dilute Fermi gases near the Feshbach resonance.

9.
Phys Rev Lett ; 91(24): 247002, 2003 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-14683148

RESUMEN

Motivated by recent developments on cold atom traps and high density QCD we consider fermionic systems composed of two particle species with different densities. We argue that a mixed phase composed of normal and superfluid components is the energetically favored ground state. We suggest how this phase separation can be used as a probe of fermion superfluidity in atomic traps.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...