Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pathogens ; 13(10)2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39452761

RESUMEN

Neisseria gonorrhoeae (NG) has developed resistance to nearly all antibiotics used for its treatment. However, very limited data are available regarding the antimicrobial resistance of NG isolates among MSM in Poland. The aim of this study was to evaluate the susceptibility of Neisseria gonorrhoeae isolates in this key population. We investigated the antimicrobial susceptibility of NG isolates to six antimicrobials (ceftriaxone, cefixime, azithromycin, ciprofloxacin, tetracycline, and benzylpenicillin). Minimum inhibitory concentrations (MICs; mg/L) were determined using Etests on gonococcal isolates. One hundred high-risk MSM were included in the study (25 HIV-positive and 75 HIV-negative using pre-exposure prophylaxis for HIV). The rate of NG infection was 28%. All NG isolates were susceptible to cefixime and ceftriaxone. Susceptibility to azithromycin was found in 69.2% (18/26) of the NG isolates and resistance in 30.8% (8/26) of NG isolates. Susceptibility to tetracycline was found in 50% (13/26) of the isolates and resistance in 50% (13/26) of the isolates. We observed gonorrhea to be more prevalent in patients with a higher number of oral sexual contacts. Increasing azithromycin resistance is especially concerning for future treatment options, especially if ceftriaxone/cefixime resistance starts to develop and for people with beta-lactam antibiotics allergies. Doxy-PEP might lose its partial efficacy for NG soon.

2.
Pathogens ; 11(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36558775

RESUMEN

Multidrug resistance of bacteria has prompted intensive development work on new medicines, but also the search for effective options among the oldest antibiotics. Although intravenous fosfomycin (IVFOS) seems to be an interesting proposal, the recommended agar dilution method for susceptibility determination poses a major problem in routine diagnostic testing. As a consequence, there is a lack of comprehensive data on the frequency of isolation of susceptible or resistant strains. This fact triggered the disposition of EUCAST concerning the revision of IVFOS breakpoints (BPs), including withdrawal of BPs for Enterobacterales (excluding E. coli) and coagulase-negative staphylococci. Therefore, the aim of this study was to assess the activity of fosfomycin against numerous clinical strains using recommended methods. Materials and methods: A total of 997 bacterial strains were tested from the following genera: Enterobacterales, Pseudomonas spp., Staphylococcus spp., Acinetobacter spp., and Enterococcus spp., for which there are currently no BPs. The strains were isolated from various clinical materials from patients hospitalized in five hospitals. During the investigation, the recommended agar dilution method was used. Susceptibility to other antibiotics and resistance mechanisms were determined using an automatic method (Phoenix) the disk diffusion method, and E-tests. MIC values of fosfomycin were estimated for all strains and for susceptible and multidrug-resistant (MDR) strains individually. Results: Except for Acinetobacter and Enterococcus, 83% of the strains were susceptible to IVFOS, including the largest percentage of S. aureus and E. coli. Klebsiella spp. turned out to be the least susceptible strains (66%). The highest proportion of susceptibility to fosfomycin was found among strains that were sensitive to other antibiotics (80.9%), and the lowest was found among Gram-negative carbapenemase-producing bacteria (55.6%) and ESBL+ bacteria (61.6%). The MIC evaluation revealed the lowest MIC50 and MIC90 values for S. aureus (0.5 mg/L and 1 mg/L, respectively) and E. coli (4 mg/L and 32 mg/L, respectively). The highest values of MIC50 were found for Acinetobacter spp. (256 mg/L), while the highest values of MIC90 were found for Acinetobacter spp. and Klebsiella spp. (256 mg/L and 512 mg/L, respectively). Conclusions: IVFOS appears to be suitable for the treatment of many infections, including the empirical treatment of polymicrobial infections and those caused by MDR strains, since the sensitivity of the studied strains to this antibiotic in different groups ranged from 66% to as much as 99%. Sensitivity to fosfomycin was also demonstrated by 60% of carbapenem-resistant strains; therefore, IVFOS is one of the few therapeutic options that can be effective against the most resistant Gram-negative rods. In light of the general consultation posted by EUCAST, obtaining data such as IVFOS MIC value distributions may be vital for the decision of implementing fosfomycin into breakpoint tables.

3.
Toxins (Basel) ; 11(7)2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31336994

RESUMEN

Chelidonium majus (Papaveraceae) extracts exhibit antimicrobial activity due to the complex alkaloid composition. The aim of the research was to evaluate the antimicrobial potential of extracts from wild plants and in vitro cultures, as well as seven major individual alkaloids. Plant material derived from different natural habitats and in vitro cultures was used for the phytochemical analysis and antimicrobial tests. The composition of alkaloids was analyzed using chromatographic techniques (HPLC with DAD detection). The results have shown that roots contained higher number and amounts of alkaloids in comparison to aerial parts. All tested plant extracts manifested antimicrobial activity, related to different chemical structures of the alkaloids. Root extract used at 31.25-62.5 mg/L strongly reduced bacterial biomass. From the seven individually tested alkaloids, chelerythrine was the most effective against P. aeruginosa (MIC at 1.9 mg/L), while sanguinarine against S. aureus (MIC at 1.9 mg/L). Strong antifungal activity was observed against C. albicans when chelerythrine, chelidonine, and aerial parts extract were used. The experiments with plant extracts, individually tested alkaloids, and variable combinations of the latter allowed for a deeper insight into the potential mechanisms affecting the activity of this group of compounds.


Asunto(s)
Alcaloides/farmacología , Antibacterianos/farmacología , Antifúngicos/farmacología , Chelidonium , Isoquinolinas/farmacología , Animales , Candida/efectos de los fármacos , Candida/crecimiento & desarrollo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/crecimiento & desarrollo , Ratones , Componentes Aéreos de las Plantas , Raíces de Plantas , Staphylococcus aureus/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...