Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542169

RESUMEN

LESION-SIMULATING DISEASE1 (LSD1) is one of the well-known cell death regulatory proteins in Arabidopsis thaliana. The lsd1 mutant exhibits runaway cell death (RCD) in response to various biotic and abiotic stresses. The phenotype of the lsd1 mutant strongly depends on two other proteins, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and PHYTOALEXIN-DEFICIENT 4 (PAD4) as well as on the synthesis/metabolism/signaling of salicylic acid (SA) and reactive oxygen species (ROS). However, the most interesting aspect of the lsd1 mutant is its conditional-dependent RCD phenotype, and thus, the defined role and function of LSD1 in the suppression of EDS1 and PAD4 in controlled laboratory conditions is different in comparison to a multivariable field environment. Analysis of the lsd1 mutant transcriptome in ambient laboratory and field conditions indicated that there were some candidate genes and proteins that might be involved in the regulation of the lsd1 conditional-dependent RCD phenotype. One of them is METACASPASE 8 (AT1G16420). This type II metacaspase was described as a cell death-positive regulator induced by UV-C irradiation and ROS accumulation. In the double mc8/lsd1 mutant, we discovered reversion of the lsd1 RCD phenotype in response to UV radiation applied in controlled laboratory conditions. This cell death deregulation observed in the lsd1 mutant was reverted like in double mutants of lsd1/eds1 and lsd1/pad4. To summarize, in this work, we demonstrated that MC8 is positively involved in EDS1 and PAD4 conditional-dependent regulation of cell death when LSD1 function is suppressed in Arabidopsis thaliana. Thus, we identified a new protein compound of the conditional LSD1-EDS1-PAD4 regulatory hub. We proposed a working model of MC8 involvement in the regulation of cell death and we postulated that MC8 is a crucial protein in this regulatory pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Muerte Celular/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo
2.
Foods ; 13(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338517

RESUMEN

Bioactive compound profiles in organic and conventional sweet basil were analyzed by HPLC, and the enzymatic status and antioxidant status of plants cultivated with the two systems were also examined. Fluorescence microscopy was used for the determination of compounds' locations in the basil leaves. The experiment was conducted from 2019 to 2021. Organic and conventional basil samples were obtained directly from Polish herb producers. The results showed that the chemical profiles of organic and conventional basil leaves are different. Not only the cultivation method but also the experimental year had a significant impact on the antioxidant content in basil leaves. Organic basil contained significantly more dry matter (11.97 g 100 g-1 FW) compared to conventional one (10.54 g 100 g-1 FW) and a higher tendency for total phenolic compounds (5.24 mg g -1 DW) accumulation. The higher bioactive compound content reflects the antioxidant activity (61.0%, 54.33%, and 46%) in organic basil compared to conventional (46.87%, 38.055, and 39.24%) with respect to the analysis method (ABTS, DPPH, and FRAP). Catalase activity (39 µmol H2O2 min-1 mg-1) in organic basil was higher compared to conventional (23.19 µmol H2O2 min-1 mg-1) ones. The obtained results are very unique and could be used by herb producers as a key for high-quality basil production. The higher concentration of bioactive compounds in organic basil gives a better nutraceutical status to this popular herb.

3.
Cells ; 12(16)2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37626829

RESUMEN

Production of biofuel from lignocellulosic biomass is relatively low due to the limited knowledge about natural cell wall loosening and cellulolytic processes in plants. Industrial separation of cellulose fiber mass from lignin, its saccharification and alcoholic fermentation is still cost-ineffective and environmentally unfriendly. Assuming that the green transformation is inevitable and that new sources of raw materials for biofuels are needed, we decided to study cell death-a natural process occurring in plants in the context of reducing the recalcitrance of lignocellulose for the production of second-generation bioethanol. "Members of the enzyme families responsible for lysigenous aerenchyma formation were identified during the root hypoxia stress in Arabidopsis thaliana cell death mutants. The cell death regulatory genes, LESION SIMULATING DISEASE 1 (LSD1), PHYTOALEXIN DEFICIENT 4 (PAD4) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) conditionally regulate the cell wall when suppressed in transgenic aspen. During four years of growth in the field, the following effects were observed: lignin content was reduced, the cellulose fiber polymerization degree increased and the growth itself was unaffected. The wood of transgenic trees was more efficient as a substrate for saccharification, alcoholic fermentation and bioethanol production. The presented results may trigger the development of novel biotechnologies in the biofuel industry.


Asunto(s)
Arabidopsis , Proteínas de Plantas , Biocombustibles , Lignina , Celulosa , Arabidopsis/genética , Biotecnología , Muerte Celular
4.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232842

RESUMEN

Rhizobia, which enter into symbiosis with legumes, can also interact with non-legumes and promote plant growth. In this paper, we explored the effects of nickel (Ni, 200 µM) on Arabidopsis thaliana (Col-0) inoculated with plant growth-promoting (PGP) rhizobia nodulating ultramafic Anthyllis vulneraria. The isolated PGP strains tolerant to Ni were identified as Rhizobium sp. and Bradyrhizobium sp. The isolates highly differed in their PGP abilities and Ni resistance. Without Ni-stress, the plants inoculated with most isolates grew better and had higher photosynthetic efficiency than non-inoculated controls. Nickel treatment increased Ni concentration in inoculated plants. Plant growth, leaf anatomy, chloroplast ultrastructure, efficiency of photosynthesis, and antioxidant defense system activity were significantly impaired by Ni, however, the majority of these effects were diminished in plants inoculated with the most effective PGP rhizobia. Real-time PCR revealed an increased expression level of genes involved in auxin and gibberellin biosynthesis in the inoculated, Ni-treated plants, and this may have improved shoot and root growth after inoculation with effective isolates. Our results also suggest a positive correlation between Ni-stress parameters and antioxidant defense system activity, and also between the effectiveness of photosynthesis and plant growth parameters. We showed that the selected rhizobia, naturally nodulating Anthyllis on Ni-rich ultramafic soils can promote Arabidopsis growth and increase plant tolerance to Ni by improving different physiological and biochemical mechanisms.


Asunto(s)
Arabidopsis , Lotus , Rhizobium , Antioxidantes/metabolismo , Bacterias , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Níquel/metabolismo , Níquel/farmacología , Rhizobium/metabolismo , Suelo/química , Microbiología del Suelo , Simbiosis
5.
J Plant Physiol ; 268: 153561, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34801776

RESUMEN

Nodulation and symbiotic nitrogen fixation are important factors that determine legume growth. A pot experiment was carried out to determine the effects of Zn-Pb contamination on nodule apoplast (cell walls and intercellular spaces) of bird's foot trefoil (Lotus corniculatus L.) that spontaneously colonized old calamine wastes. The plants were grown in pots filled with sterile calamine substrate (M, metal treated) or expanded clay (NM, untreated) and inoculated with calamine-derived Lotus-nodulating Bradyrhizobium liaoningense. Apoplast reorganization in the nodules was examined using specific dyes for cellulose, pectin and lignin detection, and immuno-histochemical techniques based on monoclonal antibodies against xyloglucan (Lm25), pectins (Jim5 and Jim7), and structural proteins (arabinogalactan protein - Lm14 and extensin - Jim12). Microscopic analysis of metal-treated nodules revealed changes in the apoplast structure and composition of nodule cortex tissues and infected cells. Wall thickening was accompanied by intensified deposition of cellulose, xyloglucan, esterified pectin, arabinogalactan protein and extensin. The metal presence redirected also lignin and suberin deposition in the walls of the nodule cortex tissues. Our results showed reorganization of the apoplast of cortex tissues and infected cells of Lotus nodules under Zn-Pb presence. These changes in the apoplast structure and composition may have created actual barriers for the toxic ions. For this reason, they can be regarded as an element of legume defense strategy against metal stress that enables effective functioning of L. corniculatus-rhizobia symbiosis on Zn-Pb polluted calamine tailings.


Asunto(s)
Plomo , Lotus , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Zinc , Lignina , Lotus/efectos de los fármacos , Fijación del Nitrógeno , Pectinas , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Contaminantes del Suelo , Simbiosis
6.
Cells ; 10(4)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924244

RESUMEN

Salicylic acid (SA) is well known hormonal molecule involved in cell death regulation. In response to a broad range of environmental factors (e.g., high light, UV, pathogens attack), plants accumulate SA, which participates in cell death induction and spread in some foliar cells. LESION SIMULATING DISEASE 1 (LSD1) is one of the best-known cell death regulators in Arabidopsis thaliana. The lsd1 mutant, lacking functional LSD1 protein, accumulates SA and is conditionally susceptible to many biotic and abiotic stresses. In order to get more insight into the role of LSD1-dependent regulation of SA accumulation during cell death, we crossed the lsd1 with the sid2 mutant, caring mutation in ISOCHORISMATE SYNTHASE 1(ICS1) gene and having deregulated SA synthesis, and with plants expressing the bacterial nahG gene and thus decomposing SA to catechol. In response to UV A+B irradiation, the lsd1 mutant exhibited clear cell death phenotype, which was reversed in lsd1/sid2 and lsd1/NahG plants. The expression of PR-genes and the H2O2 content in UV-treated lsd1 were significantly higher when compared with the wild type. In contrast, lsd1/sid2 and lsd1/NahG plants demonstrated comparability with the wild-type level of PR-genes expression and H2O2. Our results demonstrate that SA accumulation is crucial for triggering cell death in lsd1, while the reduction of excessive SA accumulation may lead to a greater tolerance toward abiotic stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/fisiología , Proteínas de Unión al ADN/metabolismo , Ácido Salicílico/metabolismo , Estrés Fisiológico/fisiología , Factores de Transcripción/metabolismo , Antioxidantes/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Muerte Celular , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Transferasas Intramoleculares/genética , Mutación/genética , Oxidación-Reducción , Fenotipo , Hojas de la Planta/metabolismo , Factores de Transcripción/genética
7.
Cells ; 10(2)2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498294

RESUMEN

Phototropins are plasma membrane-associated photoreceptors of blue light and UV-A/B radiation. The Arabidopsis thaliana genome encodes two phototropins, PHOT1 and PHOT2, that mediate phototropism, chloroplast positioning, and stomatal opening. They are well characterized in terms of photomorphogenetic processes, but so far, little was known about their involvement in photosynthesis, oxidative stress responses, and cell death. By analyzing phot1, phot2 single, and phot1phot2 double mutants, we demonstrated that both phototropins influence the photochemical and non-photochemical reactions, photosynthetic pigments composition, stomata conductance, and water-use efficiency. After oxidative stress caused by UV-C treatment, phot1 and phot2 single and double mutants showed a significantly reduced accumulation of H2O2 and more efficient photosynthetic electron transport compared to the wild type. However, all phot mutants exhibited higher levels of cell death four days after UV-C treatment, as well as deregulated gene expression. Taken together, our results reveal that on the one hand, both phot1 and phot2 contribute to the inhibition of UV-C-induced foliar cell death, but on the other hand, they also contribute to the maintenance of foliar H2O2 levels and optimal intensity of photochemical reactions and non-photochemical quenching after an exposure to UV-C stress. Our data indicate a novel role for phototropins in the condition-dependent optimization of photosynthesis, growth, and water-use efficiency as well as oxidative stress and cell death response after UV-C exposure.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Fotosíntesis/efectos de la radiación , Proteínas Serina-Treonina Quinasas/metabolismo , Rayos Ultravioleta , Antioxidantes/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biomasa , Muerte Celular/efectos de la radiación , Fluorescencia , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Homeostasis/efectos de la radiación , Peróxido de Hidrógeno/metabolismo , Mutación/genética , Estrés Oxidativo/genética , Pigmentos Biológicos/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de la radiación , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética , Transcriptoma/efectos de la radiación , Agua
8.
Cells ; 9(11)2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182774

RESUMEN

Cell death is the ultimate end of a cell cycle that occurs in all living organisms during development or responses to biotic and abiotic stresses. In the course of evolution, plants and animals evolve various molecular mechanisms to regulate cell death; however, some of them are conserved among both these kingdoms. It was found that mammalian proapoptotic BCL-2 associated X (Bax) protein, when expressed in plants, induces cell death, similar to hypersensitive response (HR). It was also shown that changes in the expression level of genes encoding proteins involved in stress response or oxidative status regulation mitigate Bax-induced plant cell death. In our study, we focused on the evolutional compatibility of animal and plant cell death molecular mechanisms. Therefore, we studied the deregulation of reactive oxygen species burst and HR-like propagation in Arabidopsis thaliana expressing mammalian Bax. We were able to diminish Bax-induced oxidative stress and HR progression through the genetic cross with plants mutated in ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), which is a plant-positive HR regulator. Plants expressing the mouse Bax gene in eds1-1 null mutant background demonstrated less pronounced cell death and exhibited higher antioxidant system efficiency compared to Bax-expressing plants. Moreover, eds1/Bax plants did not show HR marker genes induction, as in the case of the Bax-expressing line. The present study indicates some common molecular features between animal and plant cell death regulation and can be useful to better understand the evolution of cell death mechanisms in plants and animals.


Asunto(s)
Antioxidantes/metabolismo , Proteínas de Arabidopsis/metabolismo , Muerte Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Hojas de la Planta/química , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/crecimiento & desarrollo
9.
Front Plant Sci ; 11: 1124, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849690

RESUMEN

Regulation of light absorption under variable light conditions is essential to optimize photosynthetic and acclimatory processes in plants. Light energy absorbed in excess has a damaging effect on chloroplasts and can lead to cell death. Therefore, plants have evolved protective mechanisms against excess excitation energy that include chloroplast accumulation and avoidance responses. One of the proteins involved in facilitating chloroplast movements in Arabidopsis thaliana is the J domain-containing protein required for chloroplast accumulation response 1 (JAC1). The function of JAC1 relates to the chloroplast actin filaments appearance and disappearance. So far, the role of JAC1 was studied mainly in terms of chloroplasts photorelocation. Here, we demonstrate that the function of JAC1 is more complex, since it influences the composition of photosynthetic pigments, the efficiency of photosynthesis, and the CO2 uptake rate. JAC1 has positive effect on water use efficiency (WUE) by reducing stomatal aperture and water vapor conductance. Importantly, we show that the stomatal aperture regulation is genetically coupled with JAC1 activity. In addition, our data demonstrate that JAC1 is involved in the fine-tuning of H2O2 foliar levels, antioxidant enzymes activities and cell death after UV-C photooxidative stress. This work uncovers a novel function for JAC1 in affecting photosynthesis, CO2 uptake, and photooxidative stress responses.

10.
Physiol Plant ; 165(2): 369-382, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30461017

RESUMEN

In Arabidopsis thaliana, LESION SIMULATING DISEASE 1 (LSD1), ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and PHYTOALEXIN DEFICIENT 4 (PAD4) proteins are regulators of cell death (CD) in response to abiotic and biotic stresses. Hormones, such as salicylic acid (SA), and reactive oxygen species, such as hydrogen peroxide (H2 O2 ), are key signaling molecules involved in plant CD. The proposed mathematical models presented in this study suggest that LSD1, EDS1 and PAD4 together with SA and H2 O2 are involved in the control of plant water use efficiency (WUE), vegetative growth and generative development. The analysis of Arabidopsis wild-type and single mutants lsd1, eds1, and pad4, as well as double mutants eds1/lsd1 and pad4/lsd1, demonstrated the strong conditional correlation between SA/H2 O2 and WUE that is dependent on LSD1, EDS1 and PAD4 proteins. Moreover, we found a strong correlation between the SA/H2 O2 homeostasis of 4-week-old Arabidopsis leaves and a total seed yield of 9-week-old plants. Altogether, our results prove that SA and H2 O2 are conditionally regulated by LSD1/EDS/PAD4 to govern WUE, biomass accumulation and seed yield. Conditional correlation and the proposed models presented in this study can be used as the starting points in the creation of a plant breeding algorithm that would allow to estimate the seed yield at the initial stage of plant growth, based on WUE, SA and H2 O2 content.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Unión al ADN/metabolismo , Peróxido de Hidrógeno/metabolismo , Ácido Salicílico/metabolismo , Semillas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Agua/metabolismo , Aclimatación/efectos de la radiación , Arabidopsis/crecimiento & desarrollo , Modelos Biológicos , Mutación/genética , Fotosíntesis/efectos de la radiación , Estrés Fisiológico/efectos de la radiación , Rayos Ultravioleta
11.
Mol Breed ; 38(9): 114, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30237748

RESUMEN

The high content of carotenoids, sugars, dry matter, vitamins and minerals makes the fruit of winter squash (Cucurbita maxima Duchesne) a valuable fresh-market vegetable and an interesting material for the food industry. Due to their nutritional value, long shelf-life and health protective properties, winter squash fruits have gained increased interest from researchers in recent years. Despite these advantages, the genetic and genomic resources available for C. maxima are still limited. The aim of this study was to use the genetic mapping approach to map the ovary colour locus and to identify the quantitative trait loci (QTLs) for high carotenoid content and flesh colour. An F6 recombinant inbred line (RIL) mapping population was developed and used for evaluations of ovary colour, carotenoid content and fruit flesh colour. SSR markers and DArTseq genotyping-by-sequencing were used to construct an advanced genetic map that consisted of 1824 molecular markers distributed across linkage groups corresponding to 20 chromosomes of C. maxima. Total map length was 2208 cM and the average distance between markers was 1.21 cM. The locus affecting ovary colour was mapped at the end of chromosome 14. The identified QTLs for carotenoid content in the fruit and fruit flesh colour shared locations on chromosomes 2, 4 and 14. QTLs on chromosomes 2 and 4 were the most meaningful. A correlation was clearly confirmed between fruit flesh colour as described by the chroma value and carotenoid content in the fruit. A high-density genetic map of C. maxima with mapped loci for important fruit quality traits is a valuable resource for winter squash improvement programmes.

12.
J Plant Physiol ; 226: 91-102, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29730441

RESUMEN

ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) was first described as a protein involved in salicylic acid (SA)-, ethylene-, and reactive oxygen species (ROS)-dependent defense and acclimation responses. It is a molecular regulator of biotic and abiotic stress-induced programmed cell death. Its role is relatively well known in annual plants, such as Arabidopsis thaliana or Nicotiana benthamiana. However, little is known about its functions in woody plants. Therefore, in this study, we aimed to characterize the function of EDS1 in the Populus tremula L. × P. tremuloides hybrid grown for several seasons in the natural environment. We used two transgenic lines, eds1-7 and eds1-12, with decreased EDS1 expression levels in this study. The observed changes in physiological and biochemical parameters corresponded with the EDS1 silencing level. Both transgenic lines produced more lateral shoots in comparison to the wild-type (WT) plants, which resulted in the modification of tree morphology. Photosynthetic parameters, such as quantum yield of photosystem II (ϕPSII), photochemical and non-photochemical quenching (qP and NPQ, respectively), as well as chlorophyll content were found to be increased in both transgenic lines, which resulted in changes in photosynthetic efficiency. Our data also revealed lower foliar concentrations of SA and ROS, the latter resulting most probably from more efficient antioxidant system in both transgenic lines. In addition, our data indicated significantly decreased rate of leaf senescence during several autumn seasons. Transcriptomic analysis revealed deregulation of 2215 and 376 genes in eds1-12 and eds1-7, respectively, and also revealed 207 genes that were commonly deregulated in both transgenic lines. The deregulation was primarily observed in the genes involved in photosynthesis, signaling, hormonal metabolism, and development, which was found to agree with the results of biochemical and physiological tests. In general, our data proved that poplar EDS1 affects tree morphology, photosynthetic efficiency, ROS and SA metabolism, as well as leaf senescence.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Homeostasis/genética , Fotosíntesis/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Populus/fisiología , Proteínas de Unión al ADN/metabolismo , Hibridación Genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo
13.
Plant Cell Environ ; 40(11): 2644-2662, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28555890

RESUMEN

Since its discovery over two decades ago as an important cell death regulator in Arabidopsis thaliana, the role of LESION SIMULATING DISEASE 1 (LSD1) has been studied intensively within both biotic and abiotic stress responses as well as with respect to plant fitness regulation. However, its molecular mode of action remains enigmatic. Here, we demonstrate that nucleo-cytoplasmic LSD1 interacts with a broad range of other proteins that are engaged in various molecular pathways such as ubiquitination, methylation, cell cycle control, gametogenesis, embryo development and cell wall formation. The interaction of LSD1 with these partners is dependent on redox status, as oxidative stress significantly changes the quantity and types of LSD1-formed complexes. Furthermore, we show that LSD1 regulates the number and size of leaf mesophyll cells and affects plant vegetative growth. Importantly, we also reveal that in addition to its function as a scaffold protein, LSD1 acts as a transcriptional regulator. Taken together, our results demonstrate that LSD1 plays a dual role within the cell by acting as a condition-dependent scaffold protein and as a transcription regulator.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Hidrolasas de Éster Carboxílico/metabolismo , Recuento de Células , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxidación-Reducción , Estrés Oxidativo , Regiones Promotoras Genéticas/genética , Unión Proteica , Mapas de Interacción de Proteínas , Multimerización de Proteína
14.
J Plant Physiol ; 203: 44-54, 2016 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-27316917

RESUMEN

Carbonic anhydrases (CAs) catalyse reversible interconversion of CO2 and water into bicarbonate and protons and regulate concentration of CO2 around photosynthetic enzymes. In higher plants the CAs are divided into three distinct classes α, ß and γ, with members off each of them being involved in CO2 uptake, fixation or recycling. The most abundant group is ßCAs. In C4 plants they are localized in the cytosol of mesophyll cells and catalyse first step of carbon concentration pathway. C3 plants contain orthologues genes encoding ßCAs's, however their functions are unknown. Given the importance of ßCAs in the present study we analysed the effect of carbonic ions, selected orthologues ßCAs's gene expression and ßCAs enzymatic activity on Arabidopsis photosynthesis, growth and cell death in different light conditions. Plants fertilised with 0.5-3mM sodium bicarbonate had a significantly increased number of leaves, improved fresh and dry weight and reduced cell death (cellular ion leakage). This effect was dependent on provided photon flux density and photoperiod. Higher content of carbonic ions also stimulated photoprotective mechanisms such as non-photochemical quenching and foliar content of photoprotective pigments (neoxanthin, violaxanthin and carotenes). Function of various ßCAs genes examined in null ßcas mutants showed to be complementary and additive, and confirm results of fertilizing experiments. Taken together, regulation of ßCAs gene expression and enzymatic activities are important for optimal plant growth and probably can be one of the factor influencing a switch between C3 and C4 photosynthesis mode in variable light conditions. Therefore, biotechnological amelioration of ßCAs activity in economically important plants and their fertilisation with carbonic ions may lead to improved photosynthetic efficiency and further crop productivity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Carbono/metabolismo , Anhidrasas Carbónicas/metabolismo , Luz , Estrés Oxidativo/efectos de la radiación , Fotosíntesis/efectos de la radiación , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Bicarbonatos/metabolismo , Biomasa , Iones , Fosfoenolpiruvato Carboxiquinasa (ATP) , Desarrollo de la Planta/efectos de la radiación , Ribulosa-Bifosfato Carboxilasa/metabolismo
15.
J Exp Bot ; 66(21): 6679-95, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26385378

RESUMEN

Plants coordinate their responses to various biotic and abiotic stresses in order to optimize their developmental and acclimatory programmes. The ultimate response to an excessive amount of stress is local induction of cell death mechanisms. The death of certain cells can help to maintain tissue homeostasis and enable nutrient remobilization, thus increasing the survival chances of the whole organism in unfavourable environmental conditions. UV radiation is one of the environmental factors that negatively affects the photosynthetic process and triggers cell death. The aim of this work was to evaluate a possible role of the red/far-red light photoreceptors phytochrome A (phyA) and phytochrome B (phyB) and their interrelations during acclimatory responses to UV stress. We showed that UV-C treatment caused a disturbance in photosystem II and a deregulation of photosynthetic pigment content and antioxidant enzymes activities, followed by increased cell mortality rate in phyB and phyAB null mutants. We also propose a regulatory role of phyA and phyB in CO2 assimilation, non-photochemical quenching, reactive oxygen species accumulation and salicylic acid content. Taken together, our results suggest a novel role of phytochromes as putative regulators of cell death and acclimatory responses to UV.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Fitocromo A/genética , Fitocromo B/genética , Rayos Ultravioleta/efectos adversos , Aclimatación , Antioxidantes/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Muerte Celular , Mutación , Fitocromo A/metabolismo , Fitocromo B/metabolismo
16.
J Exp Bot ; 66(11): 3325-37, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25969551

RESUMEN

In plants, receptor-like protein kinases play essential roles in signal transduction by recognizing extracellular stimuli and activating the downstream signalling pathways. Cysteine-rich receptor-like kinases (CRKs) constitute a large subfamily of receptor-like protein kinases, with 44 members in Arabidopsis thaliana. They are distinguished by the novel C-X8-C-X2-C motif (DUF26) in the extracellular domains. One of them, CRK5, is an important component of the biochemical machinery involved in the regulation of essential physiological processes. Functional characterization of crk5 mutant plants showed their clear phenotype, manifested by impaired stomatal conductance and accelerated senescence. This phenotype correlated with accumulation of reactive oxygen species, higher foliar levels of ethylene and salicylic acid, and increased transcript abundance for genes associated with signalling pathways corresponding to these hormones. Moreover, the crk5 plants displayed enhanced cell death and oxidative damage in response to ultraviolet radiation. Complementation of CRK5 mutation managed to recover the wild-type phenotype, indicating an essential role of this gene in the regulation of growth, development, and acclimatory responses.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética , Transducción de Señal , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Muerte Celular , Cisteína/metabolismo , Etilenos/metabolismo , Genes Reporteros , Mutación , Estrés Oxidativo , Fenotipo , Fotosíntesis , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación , Estomas de Plantas/genética , Estomas de Plantas/crecimiento & desarrollo , Estomas de Plantas/efectos de la radiación , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Superficie Celular/metabolismo , Ácido Salicílico/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Rayos Ultravioleta
17.
Plant Cell Environ ; 38(2): 315-30, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24471507

RESUMEN

As obligate photoautotrophs, plants are inevitably exposed to ultraviolet (UV) radiation. Because of stratospheric ozone depletion, UV has become more and more dangerous to the biosphere. Therefore, it is important to understand UV perception and signal transduction in plants. In the present study, we show that lesion simulating disease 1 (LSD1) and enhanced disease susceptibility 1 (EDS1) are antagonistic regulators of UV-C-induced programmed cell death (PCD) in Arabidopsis thaliana. This regulatory dependence is manifested by a complex deregulation of photosynthesis, reactive oxygen species homeostasis, antioxidative enzyme activity and UV-responsive genes expression. We also prove that a UV-C radiation episode triggers apoptotic-like morphological changes within the mesophyll cells. Interestingly, chloroplasts are the first organelles that show features of UV-C-induced damage, which may indicate their primary role in PCD development. Moreover, we show that Arabidopsis Bax inhibitor 1 (AtBI1), which has been described as a negative regulator of plant PCD, is involved in LSD1-dependent cell death in response to UV-C. Our results imply that LSD1 and EDS1 regulate processes extinguishing excessive energy, reactive oxygen species formation and subsequent PCD in response to different stresses related to impaired electron transport.


Asunto(s)
Apoptosis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Proteínas de Unión al ADN/metabolismo , Transducción de Señal/efectos de la radiación , Estrés Fisiológico/efectos de la radiación , Factores de Transcripción/metabolismo , Rayos Ultravioleta , Antioxidantes/metabolismo , Arabidopsis/enzimología , Arabidopsis/efectos de la radiación , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Proteínas de Unión al ADN/genética , Electrólitos/metabolismo , Fluorescencia , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Peróxido de Hidrógeno/metabolismo , Mutación , Oxidación-Reducción/efectos de la radiación , Fotosíntesis/efectos de la radiación , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/ultraestructura , Factores de Transcripción/genética
18.
Plant Cell Environ ; 38(7): 1275-84, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24943986

RESUMEN

The phytoalexin deficient 4 (PAD4) gene in Arabidopsis thaliana (AtPAD4) is involved in the regulation of plant--pathogen interactions. The role of PAD4 in woody plants is not known; therefore, we characterized its function in hybrid aspen and its role in reactive oxygen species (ROS)-dependent signalling and wood development. Three independent transgenic lines with different suppression levels of poplar PAD expression were generated. All these lines displayed deregulated ROS metabolism, which was manifested by an increased H2O2 level in the leaves and shoots, and higher activities of manganese superoxide dismutase (MnSOD) and catalase (CAT) in the leaves in comparison to the wild-type plants. However, no changes in non-photochemical quenching (NPQ) between the transgenic lines and wild type were observed in the leaves. Moreover, changes in the ROS metabolism in the pad4 transgenic lines positively correlated with wood formation. A higher rate of cell division, decreased tracheid average size and numbers, and increased cell wall thickness were observed. The results presented here suggest that the Populus tremula × tremuloides PAD gene might be involved in the regulation of cellular ROS homeostasis and in the cell division--cell death balance that is associated with wood development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Populus/genética , Sesquiterpenos/metabolismo , Catalasa/metabolismo , Pared Celular/metabolismo , Clorofila/metabolismo , Clorofila A , Hibridación Genética , Lignina/análisis , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente , Populus/crecimiento & desarrollo , Populus/fisiología , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Madera/genética , Madera/crecimiento & desarrollo , Madera/fisiología , Fitoalexinas
19.
Food Funct ; 5(9): 2096-105, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24996445

RESUMEN

Very little is known about the effects of red wine consumption on male reproductive functions. Here we report the effect of regular drinking of different types of red wine on hormonal reproductive parameters and total antioxidant status in young adult male rats. Dry red wine (D-RW) exerted higher antioxidant activity and was characterized by higher concentration of phenolic compounds compared to semi-dry (SD-RW), sweet (S-RW) and semi-sweet (SS-RW) wines. No differences in total antioxidant status of rat plasma after six weeks of drinking of the wines were detected. Increased plasma follicle-stimulating hormone levels in S-RW versus control and D-RW (5.26 vs. 3.06 and 3.21 ng mL(-1)) groups were found. The plasma testosterone concentration was lower in D-RW compared to control, SD-RW, S-RW and SS-RW groups (0.25 vs. 1.12, 1.09, 1.54 and 1.25 ng mL(-1)). Higher plasma 17ß-estradiol level in S-RW versus SD-RW and SS-RW (10.94 vs. 7.18 and 6.72 pg mL(-1)) group was stated. The prolactin level was higher in plasma of S-RW versus D-RW and SS-RW (17.35 vs. 9.74 and 8.59 ng mL(-1)) rats. The effects of red wine drinking on the hormonal regulation of the male reproductive system depend on the type and the dose of red wine. Chemical compounds naturally occurring in red wines (i.e. phenolics) may modulate the effects of ethyl alcohol, but also directly affect the male reproduction.


Asunto(s)
Alcoholes/metabolismo , Antioxidantes/metabolismo , Hormonas/metabolismo , Reproducción , Vino/análisis , Alcoholes/análisis , Animales , Humanos , Masculino , Ratas , Ratas Wistar
20.
Mol Plant ; 7(7): 1151-66, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24874867

RESUMEN

Mitogen-activated protein kinase (MAPK) pathways regulate signal transduction from different cellular compartments and from the extracellular environment to the nucleus in all eukaryotes. One of the best-characterized MAPKs in Arabidopsis thaliana is MPK4, which was shown to be a negative regulator of systemic-acquired resistance. The mpk4 mutant accumulates salicylic acid (SA), possesses constitutive expression of pathogenesis-related (PR) genes, and has an extremely dwarf phenotype. We show that suppression of SA and phylloquinone synthesis in chloroplasts by knocking down the ICS1 gene (by crossing it with the ics1 mutant) in the mpk4 mutant background did not revert mpk4-impaired growth. However, it did cause changes in the photosynthetic apparatus and severely impaired the quantum yield of photosystem II. Transmission microscopy analysis revealed that the chloroplasts' structure was strongly altered in the mpk4 and mpk4/ics1 double mutant. Analysis of reactive oxygen species (ROS)-scavenging enzymes expression showed that suppression of SA and phylloquinone synthesis in the chloroplasts of the mpk4 mutant caused imbalances in ROS homeostasis which were more pronounced in mpk4/ics1 than in mpk4. Taken together, the presented results strongly suggest that MPK4 is an ROS/hormonal rheostat hub that negatively, in an SA-dependent manner, regulates immune defenses, but at the same time positively regulates photosynthesis, ROS metabolism, and growth. Therefore, we concluded that MPK4 is a complex regulator of chloroplastic retrograde signaling for photosynthesis, growth, and immune defenses in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fotosíntesis , Ácido Salicílico/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Regulación de la Expresión Génica de las Plantas , Homeostasis , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA