Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Sci Rep ; 14(1): 8938, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637629

RESUMEN

Heart failure is a serious medical condition with a poor prognosis. Current treatments can only help manage the symptoms and slow the progression of heart failure. However, there is currently no cure to prevent and reverse cardiac remodeling. Transcription factors are in a central role in various cellular processes, and in the heart, GATA4 and NKX2-5 transcription factors mediate hypertrophic responses and remodeling. We have identified compounds that modulate the synergistic interaction of GATA4 and NKX2-5 and shown that the most promising compound (1, 3i-1000) is cardioprotective in vitro and in vivo. However, direct evidence of its binding site and mechanism of action has not been available. Due to the disordered nature of transcription factors, classical target engagement approaches cannot be utilized. Here, we synthesized a small-molecule ligand-binding pulldown probe of compound 1 to utilize affinity chromatography alongside CETSA, AlphaScreen, and molecular modeling to study ligand binding. These results provide the first evidence of direct physical binding of compound 1 selectively to GATA4. While developing drugs that target transcription factors presents challenges, advances in technologies and knowledge of intrinsically disordered proteins enable the identification of small molecules that can selectively target transcription factors.


Asunto(s)
Insuficiencia Cardíaca , Factores de Transcripción , Humanos , Proteína Homeótica Nkx-2.5/metabolismo , Ligandos , Factores de Transcripción/metabolismo , Cromatografía de Afinidad , Factor de Transcripción GATA4/metabolismo , Proteínas de Homeodominio/metabolismo
2.
EMBO Rep ; 25(4): 1987-2014, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38454158

RESUMEN

α-Melanocyte-stimulating hormone (α-MSH) regulates diverse physiological functions by activating melanocortin receptors (MC-R). However, the role of α-MSH and its possible target receptors in the heart remain completely unknown. Here we investigate whether α-MSH could be involved in pathological cardiac remodeling. We found that α-MSH was highly expressed in the mouse heart with reduced ventricular levels after transverse aortic constriction (TAC). Administration of a stable α-MSH analog protected mice against TAC-induced cardiac hypertrophy and systolic dysfunction. In vitro experiments revealed that MC5-R in cardiomyocytes mediates the anti-hypertrophic signaling of α-MSH. Silencing of MC5-R in cardiomyocytes induced hypertrophy and fibrosis markers in vitro and aggravated TAC-induced cardiac hypertrophy and fibrosis in vivo. Conversely, pharmacological activation of MC5-R improved systolic function and reduced cardiac fibrosis in TAC-operated mice. In conclusion, α-MSH is expressed in the heart and protects against pathological cardiac remodeling by activating MC5-R in cardiomyocytes. These results suggest that analogs of naturally occurring α-MSH, that have been recently approved for clinical use and have agonistic activity at MC5-R, may be of benefit in treating heart failure.


Asunto(s)
Remodelación Ventricular , alfa-MSH , Ratones , Animales , alfa-MSH/farmacología , Receptores de Corticotropina , Receptores de Melanocortina , Cardiomegalia/genética , Fibrosis
3.
Stem Cell Res Ther ; 15(1): 5, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167208

RESUMEN

BACKGROUND: The prevalence of heart failure is constantly increasing, and the prognosis of patients remains poor. New treatment strategies to preserve cardiac function and limit cardiac hypertrophy are therefore urgently needed. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used as an experimental platform for cardiac in vitro studies. However, in contrast to adult cardiomyocytes, hiPSC-CMs display immature morphology, contractility, gene expression and metabolism and hence express a naive phenotype that resembles more of a foetal cardiomyocyte. METHODS: A library of 14 novel compounds was synthesized in-house and screened for GATA4-NKX2-5 reporter activity and cellular toxicity. The most potent compound, 3i-1262, along with previously reported GATA4-acting compounds, were selected to investigate their effects on hypertrophy induced by endothelin-1 or mechanical stretch. Morphological changes and protein expression were characterized using immunofluorescence staining and high-content analysis. Changes in gene expression were studied using qPCR and RNA sequencing. RESULTS: The prototype compound 3i-1262 inhibited GATA4-NKX2-5 synergy in a luciferase reporter assay. Additionally, the isoxazole compound 3i-1262 inhibited the hypertrophy biomarker B-type natriuretic peptide (BNP) by reducing BNP promoter activity and proBNP expression in neonatal rat ventricular myocytes and hiPSC-CMs, respectively. Treatment with 3i-1262 increased metabolic activity and cardiac troponin T expression in hiPSC-CMs without affecting GATA4 protein levels. RNA sequencing analysis revealed that 3i-1262 induces gene expression related to metabolic activity and cell cycle exit, indicating a change in the identity and maturity status of hiPSC-CMs. The biological processes that were enriched in upregulated genes in response to 3i-1262 were downregulated in response to mechanical stretch, and conversely, the downregulated processes in response to 3i-1262 were upregulated in response to mechanical stretch. CONCLUSIONS: There is currently a lack of systematic understanding of the molecular modulation and control of hiPSC-CM maturation. In this study, we demonstrated that the GATA4-interfering compound 3i-1262 reorganizes the cardiac transcription factor network and converts hypertrophic signalling towards enhanced cardiomyocyte identity and maturity. This conceptually unique approach provides a novel structural scaffold for further development as a modality to promote cardiomyocyte specification and maturity.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Ratas , Animales , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Hipertrofia/metabolismo , Factores de Transcripción/metabolismo , Transducción de Señal , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo
4.
Front Cardiovasc Med ; 10: 1148618, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37283582

RESUMEN

Background: After birth, mammalian cardiomyocytes substantially lose proliferative capacity with a concomitant switch from glycolytic to oxidative mitochondrial energy metabolism. Micro-RNAs (miRNAs) regulate gene expression and thus control various cellular processes. Their roles in the postnatal loss of cardiac regeneration are however still largely unclear. Here, we aimed to identify miRNA-gene regulatory networks in the neonatal heart to uncover role of miRNAs in regulation of cell cycle and metabolism. Methods and results: We performed global miRNA expression profiling using total RNA extracted from mouse ventricular tissue samples collected on postnatal day 1 (P01), P04, P09, and P23. We used the miRWalk database to predict the potential target genes of differentially expressed miRNAs and our previously published mRNA transcriptomics data to identify verified target genes that showed a concomitant differential expression in the neonatal heart. We then analyzed the biological functions of the identified miRNA-gene regulatory networks using enriched Gene Ontology (GO) and KEGG pathway analyses. Altogether 46 miRNAs were differentially expressed in the distinct stages of neonatal heart development. For twenty miRNAs, up- or downregulation took place within the first 9 postnatal days thus correlating temporally with the loss of cardiac regeneration. Importantly, for several miRNAs, including miR-150-5p, miR-484, and miR-210-3p there are no previous reports about their role in cardiac development or disease. The miRNA-gene regulatory networks of upregulated miRNAs negatively regulated biological processes and KEGG pathways related to cell proliferation, while downregulated miRNAs positively regulated biological processes and KEGG pathways associated with activation of mitochondrial metabolism and developmental hypertrophic growth. Conclusion: This study reports miRNAs and miRNA-gene regulatory networks with no previously described role in cardiac development or disease. These findings may help in elucidating regulatory mechanism of cardiac regeneration and in the development of regenerative therapies.

5.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166689, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36958711

RESUMEN

Heart formation requires transcriptional regulators that underlie congenital anomalies and the fetal gene program activated during heart failure. Attributing the effects of congenital heart disease (CHD) missense variants to disruption of specific protein domains allows for a mechanistic understanding of CHDs and improved diagnostics. A combined chemical and genetic approach was employed to identify novel CHD drivers, consisting of chemical screening during pluripotent stem cell (PSC) differentiation, gene expression analyses of native tissues and primary cell culture models, and the in vitro study of damaging missense variants from CHD patients. An epigenetic inhibitor of the TATA-Box Binding Protein Associated Factor 1 (TAF1) bromodomain was uncovered in an unbiased chemical screen for activators of atrial and ventricular fetal myosins in differentiating PSCs, leading to the development of a high affinity inhibitor (5.1 nM) of the TAF1 bromodomain, a component of the TFIID complex. TAF1 bromodomain inhibitors were tested for their effects on stem cell viability and cardiomyocyte differentiation, implicating a role for TAF1 in cardiogenesis. Damaging TAF1 missense variants from CHD patients were studied by mutational analysis of the TAF1 bromodomain, demonstrating a repressive role of TAF1 that can be abrogated by the introduction of damaging bromodomain variants or chemical TAF1 bromodomain inhibition. These results indicate that targeting the TAF1/TFIID complex with chemical compounds modulates cardiac transcription and identify an epigenetically-driven CHD mechanism due to damaging variants within the TAF1 bromodomain.


Asunto(s)
Cardiopatías Congénitas , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dominios Proteicos , Proteínas Nucleares/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Cardiopatías Congénitas/genética , Epigénesis Genética
6.
J Physiol ; 600(3): 483-507, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34761809

RESUMEN

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) in monolayers interact mechanically via cell-cell and cell-substrate adhesion. Spatiotemporal features of contraction were analysed in hiPSC-CM monolayers (1) attached to glass or plastic (Young's modulus (E) >1 GPa), (2) detached (substrate-free) and (3) attached to a flexible collagen hydrogel (E = 22 kPa). The effects of isoprenaline on contraction were compared between rigid and flexible substrates. To clarify the underlying mechanisms, further gene expression and computational studies were performed. HiPSC-CM monolayers exhibited multiphasic contractile profiles on rigid surfaces in contrast to hydrogels, substrate-free cultures or single cells where only simple twitch-like time-courses were observed. Isoprenaline did not change the contraction profile on either surface, but its lusitropic and chronotropic effects were greater in hydrogel compared with glass. There was no significant difference between stiff and flexible substrates in regard to expression of the stress-activated genes NPPA and NPPB. A computational model of cell clusters demonstrated similar complex contractile interactions on stiff substrates as a consequence of cell-to-cell functional heterogeneity. Rigid biomaterial surfaces give rise to unphysiological, multiphasic contractions in hiPSC-CM monolayers. Flexible substrates are necessary for normal twitch-like contractility kinetics and interpretation of inotropic interventions. KEY POINTS: Spatiotemporal contractility analysis of human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) monolayers seeded on conventional, rigid surfaces (glass or plastic) revealed the presence of multiphasic contraction patterns across the monolayer with a high variability, despite action potentials recorded in the same areas being identical. These multiphasic patterns are not present in single cells, in detached monolayers or in monolayers seeded on soft substrates such as a hydrogel, where only 'twitch'-like transients are observed. HiPSC-CM monolayers that display a high percentage of regions with multiphasic contraction have significantly increased contractile duration and a decreased lusotropic drug response. There is no indication that the multiphasic contraction patterns are associated with significant activation of the stress-activated NPPA or NPPB signalling pathways. A computational model of cell clusters supports the biological findings that the rigid surface and the differential cell-substrate adhesion underly multiphasic contractile behaviour of hiPSC-CMs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Potenciales de Acción , Adhesión Celular , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Contracción Miocárdica , Miocitos Cardíacos/metabolismo
7.
ACS Chem Neurosci ; 12(13): 2273-2279, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34110772

RESUMEN

Neurodegenerative diseases are associated with failed proteostasis and accumulation of insoluble protein aggregates that compromise neuronal function and survival. In Parkinson's disease, a major pathological finding is Lewy bodies and neurites that are mainly composed of phosphorylated and aggregated α-synuclein and fragments of organelle membranes. Here, we analyzed a series of selective inhibitors acting on multidomain proteins CBP and p300 that contain both lysine acetyltransferase and bromodomains and are responsible for the recognition and enzymatic modification of lysine residues. By using high-affinity inhibitors, A-485, GNE-049, and SGC-CBP30, we explored the role of two closely related proteins, CBP and p300, as promising targets for selective attenuation of α-synuclein aggregation. Our data show that selective CBP/p300 inhibitors may alter the course of pathological α-synuclein accumulation in primary mouse embryonic dopaminergic neurons. Hence, drug-like CBP/p300 inhibitors provide an effective approach for the development of high-affinity drug candidates preventing α-synuclein aggregation via systemic administration.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Neuronas Dopaminérgicas , Cuerpos de Lewy , Ratones , Dominios Proteicos
8.
Stem Cell Res Ther ; 12(1): 190, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33736688

RESUMEN

BACKGROUND: Pharmacological modulation of cell fate decisions and developmental gene regulatory networks holds promise for the treatment of heart failure. Compounds that target tissue-specific transcription factors could overcome non-specific effects of small molecules and lead to the regeneration of heart muscle following myocardial infarction. Due to cellular heterogeneity in the heart, the activation of gene programs representing specific atrial and ventricular cardiomyocyte subtypes would be highly desirable. Chemical compounds that modulate atrial and ventricular cell fate could be used to improve subtype-specific differentiation of endogenous or exogenously delivered progenitor cells in order to promote cardiac regeneration. METHODS: Transcription factor GATA4-targeted compounds that have previously shown in vivo efficacy in cardiac injury models were tested for stage-specific activation of atrial and ventricular reporter genes in differentiating pluripotent stem cells using a dual reporter assay. Chemically induced gene expression changes were characterized by qRT-PCR, global run-on sequencing (GRO-seq) and immunoblotting, and the network of cooperative proteins of GATA4 and NKX2-5 were further explored by the examination of the GATA4 and NKX2-5 interactome by BioID. Reporter gene assays were conducted to examine combinatorial effects of GATA-targeted compounds and bromodomain and extraterminal domain (BET) inhibition on chamber-specific gene expression. RESULTS: GATA4-targeted compounds 3i-1000 and 3i-1103 were identified as differential modulators of atrial and ventricular gene expression. More detailed structure-function analysis revealed a distinct subclass of GATA4/NKX2-5 inhibitory compounds with an acetyl lysine-like domain that contributed to ventricular cells (%Myl2-eGFP+). Additionally, BioID analysis indicated broad interaction between GATA4 and BET family of proteins, such as BRD4. This indicated the involvement of epigenetic modulators in the regulation of GATA-dependent transcription. In this line, reporter gene assays with combinatorial treatment of 3i-1000 and the BET bromodomain inhibitor (+)-JQ1 demonstrated the cooperative role of GATA4 and BRD4 in the modulation of chamber-specific cardiac gene expression. CONCLUSIONS: Collectively, these results indicate the potential for therapeutic alteration of cell fate decisions and pathological gene regulatory networks by GATA4-targeted compounds modulating chamber-specific transcriptional programs in multipotent cardiac progenitor cells and cardiomyocytes. The compound scaffolds described within this study could be used to develop regenerative strategies for myocardial regeneration.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Diferenciación Celular , Línea Celular , Factor de Transcripción GATA4/genética , Proteína Homeótica Nkx-2.5/genética , Miocitos Cardíacos , Organogénesis , Factores de Transcripción/genética
9.
Peptides ; 136: 170459, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33249116

RESUMEN

The procholecystokinin (proCCK) gene encodes a secreted peptide known to regulate the digestive, endocrine, and nervous systems. Though recently proposed as a biomarker for heart dysfunction, its physiological role in both the embryonic and adult heart is poorly understood, and there are no reports of tissue-specific regulators of cholecystokinin signaling in the heart or other tissues. In the present study, mRNA of proCCK was observed in cardiac tissues during mouse embryonic development, establishing proCCK as an early marker of differentiated cardiomyocytes which is later restricted to anatomical subdomains of the neonatal heart. Three-dimensional analysis of the expression of proCCK and CCKAR/CCKBR receptors was performed using in situ hybridization and optical projection tomography, illustrating chamber-specific expression patterns in the postnatal heart. Transcription factor motif analyses indicated developmental cardiac transcription factors TBX5 and MEF2C as upstream regulators of proCCK, and this regulatory activity was confirmed in reporter gene assays. proCCK mRNA levels were also measured in the infarcted heart and in response to cyclic mechanical stretch and endothelin-1, indicating dynamic transcriptional regulation which might be leveraged for improved biomarker development. Functional analyses of exogenous cholecystokinin octapeptide (CCK-8) administration were performed in differentiating mouse embryonic stem cells (mESCs), and the results suggest that CCK-8 does not act as a differentiation modulator of cardiomyocyte subtypes. Collectively, these findings indicate that proCCK is regulated at the transcriptional level by TBX5-MEF2 and neurohormonal signaling, informing use of proCCK as a biomarker and future strategies for upstream manipulation of cholecystokinin signaling in the heart and other tissues.


Asunto(s)
Colecistoquinina/genética , Corazón/crecimiento & desarrollo , Factores de Transcripción MEF2/genética , Proteínas de Dominio T Box/genética , Animales , Diferenciación Celular/genética , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Células Madre Embrionarias de Ratones , Péptidos/genética , Embarazo , Transducción de Señal/genética
10.
Mol Pharmacol ; 99(2): 104-113, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33239332

RESUMEN

Cardiac fibrosis is characterized by accumulation and activation of fibroblasts and excessive production of extracellular matrix, which results in myocardial stiffening and eventually leads to heart failure. Although previous work suggests that protein kinase C (PKC) isoforms play a role in cardiac fibrosis and remodeling, the results are conflicting. Moreover, the potential of targeting PKC with pharmacological tools to inhibit pathologic fibrosis has not been fully evaluated. Here we investigated the effects of selected PKC agonists and inhibitors on cardiac fibroblast (CF) phenotype, proliferation, and gene expression using primary adult mouse CFs, which spontaneously transdifferentiate into myofibroblasts in culture. A 48-hour exposure to the potent PKC activator phorbol 12-myristate 13-acetate (PMA) at 10 nM concentration reduced the intensity of α-smooth muscle actin staining by 56% and periostin mRNA levels by 60% compared with control. The decreases were inhibited with the pan-PKC inhibitor Gö6983 and the inhibitor of classical PKC isoforms Gö6976, suggesting that classical PKCs regulate CF transdifferentiation. PMA also induced a 33% decrease in 5-bromo-2'-deoxyuridine-positive CFs, which was inhibited with Gö6983 but not with Gö6976, indicating that novel PKC isoforms (nPKCs) regulate CF proliferation. Moreover, PMA downregulated the expression of collagen-encoding genes Col1a1 and Col3a1 nPKC-dependently, showing that PKC activation attenuates matrix synthesis in CFs. The partial PKC agonist isophthalate derivative bis(1-ethylpentyl) 5-(hydroxymethyl)isophthalate induced parallel changes in phenotype, cell cycle activity, and gene expression. In conclusion, our results reveal distinct PKC-dependent regulation of CF transdifferentiation and proliferation and suggest that PKC agonists exhibit potential as an antifibrotic treatment. SIGNIFICANCE STATEMENT: Cardiac fibrosis is a pathological process that contributes to the development of heart failure. The molecular mechanisms regulating fibrosis in the heart are, however, not fully understood, which hinders the development of new therapies. Here, we demonstrate that classical and novel protein kinase C (PKC) isoforms distinctly regulate cardiac fibroblast transdifferentiation and proliferation, the two central processes in fibrosis. Our results indicate that pharmacological PKC activation may be a promising strategy to inhibit myocardial fibrosis.


Asunto(s)
Carbazoles/farmacología , Indoles/farmacología , Maleimidas/farmacología , Miocardio/citología , Miofibroblastos/citología , Proteína Quinasa C/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Actinas/metabolismo , Animales , Moléculas de Adhesión Celular/genética , Proliferación Celular/efectos de los fármacos , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Humanos , Ratones , Miocardio/metabolismo , Miocardio/patología , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Cultivo Primario de Células , Proteína Quinasa C/antagonistas & inhibidores
11.
ESC Heart Fail ; 7(4): 1891-1899, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32410391

RESUMEN

AIMS: Hypertension is the leading cause for the development of heart failure (HF). Here, we aimed to identify cardiomyocyte stretch-induced circulating biomarkers for predicting hypertension-associated HF. METHODS AND RESULTS: Circulating levels of 149 proteins were measured by proximity extension assay at baseline examination in 4742 individuals from the Malmö Diet and Cancer study. Protein levels were compared with stretch-activated gene expression changes in cultured neonatal rat ventricular myocytes (NRVMs) in response to 1-48 h of mechanical stretch. We also studied the association between protein levels and hypertension and HF incidence using respectively binary logistic and Cox regressions. Levels of 35 proteins were differentially expressed after Bonferroni correction in incident HF vs. control (P < 3.4E-4). Growth differentiation factor-15 (GDF-15), interleukin-6 (IL-6), IL-1 receptor type 1, and urokinase plasminogen activator surface receptor had corresponding mRNA levels up-regulated by stretch in NRVMs at all time points (P < 0.05). These four proteins were individually associated with increased risk of HF after age and sex adjustment [hazard ratio (HR) per standard deviation: 1.19 ≤ HR ≤ 1.49, P ≤ 4.90E-3]. GDF-15 and IL-6 were associated with HF independently of each other (1.22 ≤ HR ≤ 1.33, P ≤ 0.001). In subjects with hypertension, these associations remained significant after further adjustment for N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels (1.23 ≤ HR ≤ 1.45, P ≤ 0.001). A higher fasting value of a GDF-15, IL-6 score aggregate was associated with increased risk of hypertensive HF after adjustment for all traditional risk factors for HF and NT-proBNP (HR = 1.31, P = 2.19E-4). CONCLUSIONS: Cardiomyocyte mRNA levels of GDF-15 and IL-6 are consistently up-regulated by stretch, and their circulating protein levels predict HF in hypertensive subjects independently of NT-proBNP during long-term follow-up. Our results encourage further studies on lower blood pressure goals in hypertensive subjects with high GDF-15 and IL-6, and interventions targeted at stretch-induced cardiomyocyte expressed biomarkers.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Animales , Biomarcadores , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/etiología , Hipertensión/diagnóstico , Hipertensión/epidemiología , Péptido Natriurético Encefálico , Fragmentos de Péptidos , Ratas
12.
Arch Toxicol ; 94(6): 2113-2130, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32185414

RESUMEN

Doxorubicin is a widely used anticancer drug that causes dose-related cardiotoxicity. The exact mechanisms of doxorubicin toxicity are still unclear, partly because most in vitro studies have evaluated the effects of short-term high-dose doxorubicin treatments. Here, we developed an in vitro model of long-term low-dose administration of doxorubicin utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Moreover, given that current strategies for prevention and management of doxorubicin-induced cardiotoxicity fail to prevent cancer patients developing heart failure, we also investigated whether the GATA4-targeted compound 3i-1000 has cardioprotective potential against doxorubicin toxicity both in vitro and in vivo. The final doxorubicin concentration used in the chronic toxicity model in vitro was chosen based on cell viability data evaluation. Exposure to doxorubicin at the concentrations of 1-3 µM markedly reduced (60%) hiPSC-CM viability already within 48 h, while a 14-day treatment with 100 nM doxorubicin concentration induced only a modest 26% reduction in hiPCS-CM viability. Doxorubicin treatment also decreased DNA content in hiPSC-CMs. Interestingly, the compound 3i-1000 attenuated doxorubicin-induced increase in pro-B-type natriuretic peptide (proBNP) expression and caspase-3/7 activation in hiPSC-CMs. Moreover, treatment with 3i-1000 for 2 weeks (30 mg/kg/day, i.p.) inhibited doxorubicin cardiotoxicity by restoring left ventricular ejection fraction and fractional shortening in chronic in vivo rat model. In conclusion, the results demonstrate that long-term exposure of hiPSC-CMs can be utilized as an in vitro model of delayed doxorubicin-induced toxicity and provide in vitro and in vivo evidence that targeting GATA4 may be an effective strategy to counteract doxorubicin-induced cardiotoxicity.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Doxorrubicina/toxicidad , Factor de Transcripción GATA4/metabolismo , Cardiopatías/prevención & control , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Sustancias Protectoras/farmacología , Animales , Cardiotoxicidad , Caspasas Efectoras/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Cardiopatías/inducido químicamente , Cardiopatías/metabolismo , Cardiopatías/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Masculino , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Péptido Natriurético Encefálico/metabolismo , Precursores de Proteínas/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Transducción de Señal , Volumen Sistólico/efectos de los fármacos , Factores de Tiempo , Función Ventricular Izquierda/efectos de los fármacos
13.
Basic Clin Pharmacol Toxicol ; 127(3): 178-195, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32060996

RESUMEN

In this study, we investigated whether local intramyocardial GATA4 overexpression affects the left ventricular (LV) remodelling process and the importance of phosphorylation at serine 105 (S105) for the actions of GATA4 in an angiotensin II (AngII)-induced hypertension rat model. Adenoviral constructs overexpressing wild-type GATA4 or GATA4 mutated at S105 were delivered into the anterior LV free wall. AngII (33.3 µg/kg/h) was administered via subcutaneously implanted minipumps. Cardiac function and structure were examined by echocardiography, followed by histological immunostainings of LV sections and gene expression measurements by RT-qPCR. The effects of GATA4 on cultured neonatal rat ventricular fibroblasts were evaluated. In AngII-induced hypertension, GATA4 overexpression repressed fibrotic gene expression, reversed the hypertrophic adult-to-foetal isoform switch of myofibrillar genes and prevented apoptosis, whereas histological fibrosis was not affected. Overexpression of GATA4 mutated at S105 resulted in LV chamber dilatation, cardiac dysfunction and had minor effects on expression of myocardial remodelling genes. Fibrotic gene expression in cardiac fibroblasts was differently affected by overexpression of wild-type or mutated GATA4. Our results indicate that GATA4 reduces AngII-induced responses by interfering with pro-fibrotic and hypertrophic gene expressions. GATA4 actions on LV remodelling and fibroblasts are dependent on phosphorylation site S105.


Asunto(s)
Factor de Transcripción GATA4/metabolismo , Hipertensión/fisiopatología , Remodelación Ventricular/fisiología , Angiotensina II , Animales , Apoptosis/fisiología , Proliferación Celular/fisiología , Ecocardiografía , Fibroblastos , Fibrosis/metabolismo , Hipertensión/inducido químicamente , Masculino , Infarto del Miocardio , Miocitos Cardíacos , Fosforilación , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley
14.
ACS Appl Mater Interfaces ; 12(6): 6899-6909, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31967771

RESUMEN

Heart tissue engineering is critical in the treatment of myocardial infarction, which may benefit from drug-releasing smart materials. In this study, we load a small molecule (3i-1000) in new biodegradable and conductive patches for application in infarcted myocardium. The composite patches consist of a biocompatible elastomer, poly(glycerol sebacate) (PGS), coupled with collagen type I, used to promote cell attachment. In addition, polypyrrole is incorporated because of its electrical conductivity and to induce cell signaling. Results from the in vitro experiments indicate a high density of cardiac myoblast cells attached on the patches, which stay viable for at least 1 month. The degradation of the patches does not show any cytotoxic effect, while 3i-1000 delivery induces cell proliferation. Conductive patches show high blood wettability and drug release, correlating with the rate of degradation of the PGS matrix. Together with the electrical conductivity and elongation characteristics, the developed biomaterial fits the mechanical, conductive, and biological demands required for cardiac treatment.


Asunto(s)
Decanoatos/química , Sistemas de Liberación de Medicamentos/métodos , Glicerol/análogos & derivados , Infarto del Miocardio/tratamiento farmacológico , Polímeros/química , Bibliotecas de Moléculas Pequeñas/química , Animales , Sistemas de Liberación de Medicamentos/instrumentación , Conductividad Eléctrica , Glicerol/química , Humanos , Ensayo de Materiales , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Nanopartículas/química , Pirroles/química , Bibliotecas de Moléculas Pequeñas/farmacología
15.
Nanoscale ; 12(4): 2350-2358, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31930241

RESUMEN

The advent of nanomedicine has recently started to innovate the treatment of cardiovascular diseases, in particular myocardial infarction. Although current approaches are very promising, there is still an urgent need for advanced targeting strategies. In this work, the exploitation of macrophage recruitment is proposed as a novel and synergistic approach to improve the addressability of the infarcted myocardium achieved by current peptide-based heart targeting strategies. For this purpose, an acetalated dextran-based nanosystem is designed and successfully functionalized with two different peptides, atrial natriuretic peptide (ANP) and linTT1, which target, respectively, cardiac cells and macrophages associated with atherosclerotic plaques. The biocompatibility of the nanocarrier is screened on both macrophage cell lines and primary macrophages, showing high safety, in particular after functionalization of the nanoparticles' surface. Furthermore, the system shows higher association versus uptake ratio towards M2-like macrophages (approximately 2-fold and 6-fold increase in murine and human primary M2-like macrophages, respectively, compared to M1-like). Overall, the results demonstrate that the nanosystem has potential to exploit the "hitchhike" effect on M2-like macrophages and potentially improve, in a dual targeting strategy, the ability of the ANP peptide to target infarcted heart.


Asunto(s)
Dextranos/química , Macrófagos/metabolismo , Infarto del Miocardio/terapia , Nanomedicina/métodos , Nanopartículas/química , Péptidos/química , Animales , Apoptosis , Factor Natriurético Atrial/química , Materiales Biocompatibles/metabolismo , Línea Celular , Humanos , Concentración de Iones de Hidrógeno , Ratones , Monocitos/metabolismo , Miocardio/metabolismo , Placa Aterosclerótica/metabolismo , Células RAW 264.7
16.
Front Pharmacol ; 11: 553852, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584253

RESUMEN

Background: Hypertrophy of cardiomyocytes (CMs) is initially a compensatory mechanism to cardiac overload, but when prolonged, it leads to maladaptive myocardial remodeling, impairing cardiac function and causing heart failure. A key signaling molecule involved in cardiac hypertrophy is protein kinase C (PKC). However, the role of different PKC isoforms in mediating the hypertrophic response remains controversial. Both classical (cPKC) and novel (nPKC) isoforms have been suggested to play a critical role in rodents, whereas the role of PKC in hypertrophy of human CMs remains to be determined. Here, we aimed to investigate the effects of two different types of PKC activators, the isophthalate derivative HMI-1b11 and bryostatin-1, on CM hypertrophy and to elucidate the role of cPKCs and nPKCs in endothelin-1 (ET-1)-induced hypertrophy in vitro. Methods and Results: We used neonatal rat ventricular myocytes (NRVMs) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to study the effects of pharmacological PKC modulators and ET-1. We used quantitative reverse transcription PCR to quantify hypertrophic gene expression and high-content analysis (HCA) to investigate CM morphology. In both cell types, ET-1, PKC activation (bryostatin-1 and HMI-1b11) and inhibition of cPKCs (Gö6976) increased hypertrophic gene expression. In NRVMs, these treatments also induced a hypertrophic phenotype as measured by increased recognition, intensity and area of α-actinin and F-actin fibers. Inhibition of all PKC isoforms with Gö6983 inhibited PKC agonist-induced hypertrophy, but could not fully block ET-1-induced hypertrophy. The mitogen-activated kinase kinase 1/2 inhibitor U0126 inhibited PKC agonist-induced hypertrophy fully and ET-1-induced hypertrophy partially. While ET-1 induced a clear increase in the percentage of pro-B-type natriuretic peptide-positive hiPSC-CMs, none of the phenotypic parameters used in HCA directly correlated with gene expression changes or with phenotypic changes observed in NRVMs. Conclusion: This work shows similar hypertrophic responses to PKC modulators in NRVMs and hiPSC-CMs. Pharmacological PKC activation induces CM hypertrophy via activation of novel PKC isoforms. This pro-hypertrophic effect of PKC activators should be considered when developing PKC-targeted compounds for e.g. cancer or Alzheimer's disease. Furthermore, this study provides further evidence on distinct PKC-independent mechanisms of ET-1-induced hypertrophy both in NRVMs and hiPSC-CMs.

17.
IUBMB Life ; 72(1): 68-79, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31419020

RESUMEN

Various strategies have been applied to replace the loss of cardiomyocytes in order to restore reduced cardiac function and prevent the progression of heart disease. Intensive research efforts in the field of cellular reprogramming and cell transplantation may eventually lead to efficient in vivo applications for the treatment of cardiac injuries, representing a novel treatment strategy for regenerative medicine. Modulation of cardiac transcription factor (TF) networks by chemical entities represents another viable option for therapeutic interventions. Comprehensive screening projects have revealed a number of molecular entities acting on molecular pathways highly critical for cellular lineage commitment and differentiation, including compounds targeting Wnt- and transforming growth factor beta (TGFß)-signaling. Furthermore, previous studies have demonstrated that GATA4 and NKX2-5 are essential TFs in gene regulation of cardiac development and hypertrophy. For example, both of these TFs are required to fully activate mechanical stretch-responsive genes such as atrial natriuretic peptide and brain natriuretic peptide (BNP). We have previously reported that the compound 3i-1000 efficiently inhibited the synergy of the GATA4-NKX2-5 interaction. Cellular effects of 3i-1000 have been further characterized in a number of confirmatory in vitro bioassays, including rat cardiac myocytes and animal models of ischemic injury and angiotensin II-induced pressure overload, suggesting the potential for small molecule-induced cardioprotection.


Asunto(s)
Desarrollo Embrionario , Factor de Transcripción GATA4/metabolismo , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Organogénesis , Animales , Factor de Transcripción GATA4/genética , Humanos , Transducción de Señal
18.
Arch Toxicol ; 94(2): 631-645, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31811323

RESUMEN

Reliable in vitro models to assess developmental toxicity of drugs and chemicals would lead to improvement in fetal safety and a reduced cost of drug development. The validated embryonic stem cell test (EST) uses cardiac differentiation of mouse embryonic stem cells (mESCs) to predict in vivo developmental toxicity, but does not take into account the stage-specific patterning of progenitor populations into anterior (ventricular) and posterior (atrial) compartments. In this study, we generated a novel dual reporter mESC line with fluorescent reporters under the control of anterior and posterior cardiac promoters. Reporter expression was observed in nascent compartments in transgenic mouse embryos, and mESCs were used to develop differentiation assays in which chemical modulators of Wnt (XAV939: 3, 10 µM), retinoic acid (all-trans retinoic acid: 0.1, 1, 10 µM; 9-cis retinoic acid: 0.1, 1, 10 µM; bexarotene 0.1, 1, 10 µM), and Tgf-ß (SB431542: 3, 10 µM) pathways were tested for stage- and dose-dependent effects on in vitro anterior-posterior patterning. Our results suggest that with further development, the inclusion of anterior-posterior reporter expression could be part of a battery of high-throughput tests used to identify and characterize teratogens.


Asunto(s)
Genes Reporteros , Proteínas Fluorescentes Verdes , Corazón/efectos de los fármacos , Células Madre Embrionarias de Ratones/citología , Teratógenos/toxicidad , Pruebas de Toxicidad/métodos , Animales , Tipificación del Cuerpo/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Femenino , Edición Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Corazón/embriología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos Cardíacos/citología , Cadenas Ligeras de Miosina/genética , Embarazo , Retinoides/farmacología
19.
BMC Cardiovasc Disord ; 19(1): 306, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31856737

RESUMEN

BACKGROUND: Calcific aortic valve disease (CAVD) is an atheroinflammatory process; finally it leads to progressive calcification of the valve. There is no effective pharmacological treatment for CAVD and many of the underlying molecular mechanisms remain unknown. We conducted a proteomic study to reveal novel factors associated with CAVD. METHODS: We compared aortic valves from patients undergoing valvular replacement surgery due to non-calcified aortic insufficiency (control group, n = 5) to a stenotic group (n = 7) using two-dimensional difference gel electrophoresis (2D-DIGE). Protein spots were identified with mass spectrometry. Western blot and immunohistochemistry were used to validate the results in a separate patient cohort and Ingenuity Pathway Analysis (IPA) was exploited to predict the regulatory network of CAVD. RESULTS: We detected an upregulation of complement 9 (C9), serum amyloid P-component (APCS) and transgelin as well as downregulation of heat shock protein (HSP90), protein disulfide isomerase A3 (PDIA3), annexin A2 (ANXA2) and galectin-1 in patients with aortic valve stenosis. The decreased protein expression of HSP90 was confirmed with Western blot. CONCLUSIONS: We describe here a novel data set of proteomic changes associated with CAVD, including downregulation of the pro-inflammatory cytosolic protein, HSP90.


Asunto(s)
Estenosis de la Válvula Aórtica/metabolismo , Válvula Aórtica/química , Válvula Aórtica/patología , Calcinosis/metabolismo , Proteínas HSP90 de Choque Térmico/análisis , Adulto , Anciano , Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/patología , Calcinosis/patología , Estudios de Casos y Controles , Regulación hacia Abajo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mapas de Interacción de Proteínas , Proteómica , Transducción de Señal
20.
J Med Chem ; 62(17): 8284-8310, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31431011

RESUMEN

Transcription factors GATA4 and NKX2-5 directly interact and synergistically activate several cardiac genes and stretch-induced cardiomyocyte hypertrophy. Previously, we identified phenylisoxazole carboxamide 1 as a hit compound, which inhibited the GATA4-NKX2-5 transcriptional synergy. Here, the chemical space around the molecular structure of 1 was explored by synthesizing and characterizing 220 derivatives and structurally related compounds. In addition to the synergistic transcriptional activation, selected compounds were evaluated for their effects on transcriptional activities of GATA4 and NKX2-5 individually as well as potential cytotoxicity. The structure-activity relationship (SAR) analysis revealed that the aromatic isoxazole substituent in the southern part regulates the inhibition of GATA4-NKX2-5 transcriptional synergy. Moreover, inhibition of GATA4 transcriptional activity correlated with the reduced cell viability. In summary, comprehensive SAR analysis accompanied by data analysis successfully identified potent and selective inhibitors of GATA4-NKX2-5 transcriptional synergy and revealed structural features important for it.


Asunto(s)
Factor de Transcripción GATA4/antagonistas & inhibidores , Proteína Homeótica Nkx-2.5/antagonistas & inhibidores , Isoxazoles/farmacología , Animales , Células COS , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Factor de Transcripción GATA4/química , Factor de Transcripción GATA4/metabolismo , Proteína Homeótica Nkx-2.5/química , Proteína Homeótica Nkx-2.5/metabolismo , Isoxazoles/síntesis química , Isoxazoles/química , Estructura Molecular , Unión Proteica/efectos de los fármacos , Ratas , Ratas Wistar , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA