RESUMEN
Women persistently infected with human papillomavirus (HPV) type 16 are at high risk for development of cervical intraepithelial neoplasia grade 3 or cervical cancer (CIN3+). We aimed to identify biomarkers for progression to CIN3+ in women with persistent HPV16 infection. In this prospective study, 11,088 women aged 20-29 years were enrolled during 1991-1993, and re-invited for a second visit two years later. Cervical cytology samples obtained at both visits were tested for HPV DNA by Hybrid Capture 2 (HC2), and HC2-positive samples were genotyped by INNO-LiPA. The cohort was followed for up to 19 years via a national pathology register. To identify markers for progression to CIN3+, we performed microarray analysis on RNA extracted from cervical swabs of 30 women with persistent HPV16-infection and 11 HPV-negative women. Six genes were selected and validated by quantitative PCR. Three genes were subsequently validated within a different and large group of women from the same cohort. Secondly, Kaplan-Meier and Cox-regression analyses were used to investigate whether expression levels of those three genes predict progression to CIN3+. We found that high transcript levels of TMEM45A, SERPINB5 and p16INK4a at baseline were associated with increased risk of CIN3+ during follow-up. The hazard ratios of CIN3+ per 10-fold increase in baseline expression level were 1.6 (95% CI: 1.1-2.3) for TMEM45A, 1.6 (95% CI: 1.1-2.5) for p16INK4a, and 1.8 (95% CI: 1.2-2.7) for SERPINB5. In conclusion, high mRNA expression levels of TMEM45A, SERPINB5 and p16INK4a were associated with increased risk of CIN3+ in persistently HPV16-infected women.
RESUMEN
Persistent infection with a high risk (hr) human papillomavirus (HPV) has been established as the main cause of cervical cancer and high-grade cervical intraepithelial neoplasia (CIN3). Because most infections are transient, testing for hrHPV lacks specificity and has a low positive predictive value. It has been suggested that additional parameters like viral load and physical status of the viral genome could improve the effectiveness of HPV-based screening. We investigated the association between HPV16 viral load and physical state with viral persistence or risk of incident CIN3 or worse in a population-based prospective cohort study comprising 8656 women (20-29 years). All participants had two gynecological examinations two years apart and were followed through the nationwide Danish Pathology Data Bank (median follow-up: 12.9 yrs). Seventynine cervical swabs from women with a persistent HPV16 infection were available for analysis. For comparison we selected a random age-matched sample of transiently HPV16 infected women (N=91). Persistently infected women with incident CIN3 or cancer (CIN3+; N=31) were compared to women with normal cytology during follow up (non-progressors; N=39). Quantitative real-time PCR for HPV16E6, E2 and IFNb1 was done to determine the HPV16 viral load and the E2/E6 ratio was used as a surrogate marker for integration. Women with normal cytology who became persistently HPV16 infected had a significantly lower HPV16 load at baseline than women who cleared the infection (median 4.72 copies/cell versus median 20.0 copies/cell, respectively; p=0.0003). There was no difference in viral load at enrollment between women who progressed to CIN3+ and women who stayed cytologically normal (p=0.85). At the second examination viral load tended to be higher in women who progressed, but the difference was not statistically significant (p=0.39). The E2/E6 ratio was shown to be lower in the persistently infected group (p<0.0001) already at the first examination, but no difference between non-progressors and CIN3+ cases was observed at any of the two examinations (p=0.61 and 0.86). Lower viral load and integration of the viral genome are predictive for the persistence of HPV16 DNA, but not for the progression of a persistent HPV16 infection to CIN3+ in women with normal cytology.
RESUMEN
Novel Epstein-Barr Virus (EBV) strains with deletion of either EBER1 or EBER2 and corresponding revertant viruses were constructed and used to infect B lymphocytes to make lymphoblastoid cell lines (LCLs). The LCLs were used in microarray expression profiling to identify genes whose expression correlates with the presence of EBER1 or EBER2. Functions of regulated genes identified in the microarray analysis include membrane signaling, regulation of apoptosis, and the interferon/antiviral response. Although most emphasis has previously been given to EBER1 because it is more abundant than EBER2, the differences in cell gene expression were greater with EBER2 deletion. In this system, deletion of EBER1 or EBER2 had little effect on the EBV transformation frequency of primary B cells or the growth of the resulting LCLs. Using the recombinant viruses and novel EBER expression vectors, the nuclear redistribution of rpL22 protein by EBER1 in 293 cells was confirmed, but in LCLs almost all of the cells had a predominantly cytoplasmic expression of this ribosomal protein, which was not detectably changed by EBER1. The changes in LCL gene expression identified here will provide a basis for identifying the mechanisms of action of EBER RNAs.
Asunto(s)
Linfocitos B/virología , Perfilación de la Expresión Génica , Herpesvirus Humano 4/patogenicidad , Interacciones Huésped-Patógeno , Activación de Linfocitos , ARN Viral/metabolismo , Línea Celular , Eliminación de Gen , Humanos , Análisis por Micromatrices , ARN Viral/genéticaRESUMEN
A transfection assay with a lymphoblastoid cell line infected with Epstein-Barr virus was used to compare the abilities of type 1 and type 2 EBNA2 to sustain cell proliferation. The reduced proliferation in cells expressing type 2 EBNA2 correlated with loss of expression of some cell genes that are known to be targets of type 1 EBNA2. Microarray analysis of EBNA2 target genes identified a small number of genes that are more strongly induced by type 1 than by type 2 EBNA2, and one of these genes (CXCR7) was shown to be required for proliferation of lymphoblastoid cell lines. The Epstein-Barr virus LMP1 gene was also more strongly induced by type 1 EBNA2 than by type 2, but this effect was transient. Type 1 and type 2 EBNA2 were equally effective at arresting cell proliferation of Burkitt's lymphoma cell lines lacking Epstein-Barr virus and were also shown to cause apoptosis in these cells. The results indicate that differential gene regulation by Epstein-Barr virus type 1 and type 2 EBNA2 may be the basis for the much weaker B-cell transformation activity of type 2 Epstein-Barr virus strains compared to type 1 strains.