Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Chem Commun (Camb) ; 60(34): 4617, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38602132

RESUMEN

Correction for 'Modified minimal-size fragments of heparan sulfate as inhibitors of endosulfatase-2 (Sulf-2)' by Alice Kennett et al., Chem. Commun., 2024, 60, 436-439, https://doi.org/10.1039/D3CC02565A.

2.
Chem Commun (Camb) ; 60(4): 436-439, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38086706

RESUMEN

Sulf-2 has been identified as a putative target for anticancer therapies. Here we report the design and synthesis of sulfated disaccharide inhibitors based on IdoA(2S)-GlcNS(6S). Trisulfated disaccharide inhibitor IdoA(2S)-GlcNS(6Sulfamate) demonstrated potent Sulf-2 inhibition. The IC50 value was determined to be 39.8 µM ± 18.3, which is comparable to a tetrasaccharide inhibitor of HSulf-1 reported in the literature. We propose that the disaccharide IdoA(2S)-GlcNS(6S) is the shortest fragment size required for effective inhibition of the Sulfs.


Asunto(s)
Heparitina Sulfato , Oligosacáridos , Heparitina Sulfato/farmacología , Oligosacáridos/farmacología , Disacáridos/farmacología , Sulfotransferasas
3.
Eur J Neurosci ; 59(6): 1242-1259, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37941514

RESUMEN

Ca2+ entry into nigrostriatal dopamine (DA) neurons and axons via L-type voltage-gated Ca2+ channels (LTCCs) contributes, respectively, to pacemaker activity and DA release and has long been thought to contribute to vulnerability to degeneration in Parkinson's disease. LTCC function is greater in DA axons and neurons from substantia nigra pars compacta than from ventral tegmental area, but this is not explained by channel expression level. We tested the hypothesis that LTCC control of DA release is governed rather by local mechanisms, focussing on candidate biological factors known to operate differently between types of DA neurons and/or be associated with their differing vulnerability to parkinsonism, including biological sex, α-synuclein, DA transporters (DATs) and calbindin-D28k (Calb1). We detected evoked DA release ex vivo in mouse striatal slices using fast-scan cyclic voltammetry and assessed LTCC support of DA release by detecting the inhibition of DA release by the LTCC inhibitors isradipine or CP8. Using genetic knockouts or pharmacological manipulations, we identified that striatal LTCC support of DA release depended on multiple intersecting factors, in a regionally and sexually divergent manner. LTCC function was promoted by factors associated with Parkinsonian risk, including male sex, α-synuclein, DAT and a dorsolateral co-ordinate, but limited by factors associated with protection, that is, female sex, glucocerebrosidase activity, Calb1 and ventromedial co-ordinate. Together, these data show that LTCC function in DA axons and isradipine effect are locally governed and suggest they vary in a manner that in turn might impact on, or reflect, the cellular stress that leads to parkinsonian degeneration.


Asunto(s)
Dopamina , Enfermedad de Parkinson , Femenino , Ratones , Animales , Masculino , Isradipino/farmacología , Isradipino/metabolismo , Dopamina/metabolismo , Canales de Calcio Tipo L/metabolismo , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/metabolismo , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Sustancia Negra/metabolismo , Factores de Riesgo , Calcio/metabolismo
4.
J Med Chem ; 67(1): 110-137, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38146625

RESUMEN

Orphan G-protein-coupled receptor 84 (GPR84) is a receptor that has been linked to cancer, inflammatory, and fibrotic diseases. We have reported DL-175 as a biased agonist at GPR84 which showed differential signaling via Gαi/cAMP and ß-arrestin, but which is rapidly metabolized. Herein, we describe an optimization of DL-175 through a systematic structure-activity relationship (SAR) analysis. This reveals that the replacement of the naphthalene group improved metabolic stability and the addition of a 5-hydroxy substituent to the pyridine N-oxide group, yielding compounds 68 (OX04528) and 69 (OX04529), enhanced the potency for cAMP signaling by 3 orders of magnitude to low picomolar values. Neither compound showed detectable effects on ß-arrestin recruitment up to 80 µM. Thus, the new GPR84 agonists 68 and 69 displayed excellent potency, high G-protein signaling bias, and an appropriate in vivo pharmacokinetic profile that will allow investigation of GPR84 biased agonist activity in vivo.


Asunto(s)
Proteínas de Unión al GTP , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Unión al GTP/metabolismo , Transducción de Señal , beta-Arrestinas/metabolismo , Relación Estructura-Actividad
5.
Br J Pharmacol ; 181(10): 1509-1523, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38148720

RESUMEN

GPR84 was first identified as an open reading frame encoding an orphan Class A G protein coupled receptor in 2001. Gpr84 mRNA is expressed in a limited number of cell types with the highest levels of expression being in innate immune cells, M1 polarised macrophages and neutrophils. The first reported ligands for this receptor were medium chain fatty acids with chain lengths between 9 and 12 carbons. Subsequently, a series of synthetic agonists that signal via the GPR84 receptor were identified. Radioligand binding assays and molecular modelling with site-directed mutagenesis suggest the presence of three ligand binding sites on the receptor, but the physiological agonist(s) of the receptor remain unidentified. Here, we review the effects of GPR84 agonists on innate immune cells following a series of chemical discoveries since 2001. The development of highly biased agonists has helped to probe receptor function in vitro, and the remaining challenge is to follow the effects of biased signalling to the physiological functions of innate immune cell types. LINKED ARTICLES: This article is part of a themed issue GPR84 Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.10/issuetoc.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Receptores Acoplados a Proteínas G/metabolismo , Macrófagos , Ligandos , Fagocitosis
6.
Eur J Pharmacol ; 956: 175960, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543157

RESUMEN

GPR84 is an orphan G-protein coupled receptor (GPCR) linked to inflammation. Strategies targeting GPR84 to prevent excessive inflammation in disease are hampered by a lack of understanding of its precise functional role. We have developed heterologous cell lines with low GPR84 expression levels that phenocopy the response of primary cells in a label-free cell electrical impedance (CEI) sensing system that measures cell morphology and adhesion. We then investigated the signalling profile and membrane localisation of GPR84 upon treatment with 6-OAU and DL-175, two agonists known to differentially influence immune cell function. When compared to 6-OAU, DL-175 was found to exhibit a delayed impedance response, a delayed and suppressed activation of Akt, which together correlated with an impaired ability to internalise GPR84 from the plasma membrane. The signalling differences were transient and occurred only at early time points in the low expressing cell lines, highlighting the importance of receptor number and kinetic readouts when evaluating signalling bias. Our findings open new ways to understand GPR84 signalling and evaluate the effect of newly developed agonists.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Membrana Celular/metabolismo , Línea Celular , Inflamación/metabolismo
7.
Can J Neurol Sci ; : 1-5, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37555238

RESUMEN

BACKGROUND: Carpal tunnel syndrome (CTS) is one of the most common extra-cardiac manifestations of wild-type transthyretin amyloidosis (wtATTR); however, the characteristics of CTS in this population remain poorly understood. METHODS: This retrospective cohort study reports findings from a single-centre experience of comprehensive neurological screening at the time of wtATTR diagnosis by nerve conduction studies (NCS) and neurologist assessment. RESULTS: Seventy-nine patients underwent neurological screening, 73 (92%) males, mean age 79.2 ± 7.5 years. Seventy-four (94%) had electrodiagnostic findings of median neuropathy at the wrist (MNW), 37 (50%) of which had a prior diagnosis of CTS and 37 (50%) had a new diagnosis of MNW. Over half of wtATTR patients (42, 53%) had bilateral MNW on screening. Most with pre-existing CTS had bilateral disease (28, 76%) and underwent bilateral carpal tunnel release (CTR) (23, 62%) prior to screening. Twenty-one (19%) wrists had mild MNW, 43 (38%) moderate and 49 (43%) severe. Twenty-one (28%) wtATTR patients with MNW were asymptomatic, 10 of which (48%) had moderate disease. Nineteen (36%) wtATTR patients with symptomatic MNW had recurrent disease despite previous CTR. As a result of screening, 36 (68%) patients with symptomatic MNW were referred for CTR. CONCLUSIONS: MNW is exceptionally common at the time of wtATTR diagnosis, affecting 94% of our patients. Most had severe, bilateral MNW on NCS. Some were asymptomatic, despite having moderate disease. The rate of recurrence following CTR was observed to be higher in wtATTR patients than the general population.

8.
Eur J Med Chem ; 258: 115509, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37343464

RESUMEN

Acute myeloid leukaemia (AML) is an aggressive type of leukaemia with low rates of long-term survival. While the current standard of care is based on cytotoxic chemotherapy, a promising emerging approach is differentiation therapy. However, most current differentiating agents target specific mutations and are effective only in certain patient subtypes. To identify agents which may be effective in wider population cohorts, we performed a phenotypic screen with the myeloid marker CD11b and identified a compound series that was able to differentiate AML cell lines in vitro regardless of their mutation status. Structure-activity relationship studies revealed that replacing the formamide and catechol methyl ether groups with sulfonamide and indazole respectively improved the in vitro metabolic profile of the series while maintaining the differentiation profile in multiple cell lines. This optimisation exercise enabled progression of a lead compound to in vivo efficacy testing. Our work supports the promise of phenotypic screening to identify novel small molecules that induce differentiation in a wide range of AML subtypes.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular , Diferenciación Celular , Piridinas/farmacología
9.
Physiol Behav ; 269: 114273, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37331456

RESUMEN

This study examined 24-h hydration parameters among collegiate, male soccer players (n = 17) during twice (X2) and once (X1) per day practice schedules in the heat. Urine specific gravity (USG) and body mass were measured before morning practices, afternoon practice (X2)/team meeting (X1), and the next morning practices. Fluid intake, sweat losses, and urinary losses were assessed during each 24-h window. Pre-practice body mass or USG did not differ among the timepoints. Sweat losses differed among all practices (p < 0.05) and averaged approximately 2.181±0.693 (X2AM) 1.710±0.474 (X2PM), and 3.361±0.956 L (X1AM), but players averaged replacing >50% of sweat losses with fluid intake every practice. Fluid intake during and between practices from practice 1 to the afternoon practice for X2 resulted in a positive fluid balance for X2 (+0.446±0.916 L). However, higher sweat loss during the initial morning practice and lower relative fluid intake prior to the afternoon team meeting the following morning resulted in a negative fluid balance (-0.304±0.675 L; p < 0.05: Cohen's d = 0.94) over the same time period for X1. By the start of the next morning practice sessions, both X1 (+0.664±1.051 L) and X2 (+0.446±0.916 L) were in positive fluid balance, respectively. Ample fluid consumption opportunities, scaled down practice intensities during X2, and potentially intentional greater relative fluid intake during X2 training resulted in no difference in fluid shift versus an X1 schedule before the start of practices. The majority of players maintained fluid balance drinking ad libitum regardless of practice schedule.


Asunto(s)
Deshidratación , Fútbol , Masculino , Humanos , Calor , Ingestión de Líquidos , Sudoración , Equilibrio Hidroelectrolítico
10.
J Histochem Cytochem ; 71(6): 301-320, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37350564

RESUMEN

Retinal astrocytes are vital for neuronal homeostasis in the retina. Together with Müller glia, they provide retinal cells with neurotrophic factors, antioxidative support, and defense mechanisms such as the formation of the blood-retinal barrier. Substantial heterogeneity of astrocyte morphology and function represents a challenge for identification of distinct subtypes which may be potential targets for therapeutic purposes. Hence, identification of novel markers of astrocyte subpopulations is highly relevant to better understand the molecular mechanisms involved in retinal development, homeostasis, and pathology. In this study, we observed that the cell cycle regulator, p16INK4a, is expressed in immature astrocytes in the mouse retina. Immunohistochemical analysis showed p16INK4a expression in the optic nerve of wild-type mice from 3 days to 3 months of age and in the nerve fiber layer of the adult mouse retina. Colocalization of p16INK4a expression and glial fibrillary acidic protein (immature/mature astrocyte marker) tends to decrease with age. However, colocalization of p16INK4a expression and vimentin (immature astrocyte marker) remains high in the optic nerve from the early postnatal period to adulthood. The observations from this study provide a valuable tool for further investigations of ocular astrocytes in the developing retina as well as in degenerative retinopathies.


Asunto(s)
Astrocitos , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Ratones , Animales , Astrocitos/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/análisis , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Neuroglía , Retina/metabolismo , Proteína Ácida Fibrilar de la Glía/análisis , Ciclo Celular
11.
Bioorg Med Chem ; 83: 117255, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36966660

RESUMEN

Barriers to the ready adoption of biocatalysis into asymmetric synthesis for early stage medicinal chemistry are addressed, using ketone reduction by alcohol dehydrogenase as a model reaction. An efficient substrate screening approach is used to show the wide substrate scope of commercial alcohol dehydrogenase enzymes, with a high tolerance to chemical groups employed in drug discovery (heterocycle, trifluoromethyl and nitrile/nitro groups) observed. We use our screening data to build a preliminary predictive pharmacophore-based screening tool using Forge software, with a precision of 0.67/1, demonstrating the potential for developing substrate screening tools for commercially available enzymes without publicly available structures. We hope that this work will facilitate a culture shift towards adopting biocatalysis alongside traditional chemical catalytic methods in early stage drug discovery.


Asunto(s)
Alcohol Deshidrogenasa , Farmacóforo , Alcohol Deshidrogenasa/química , Alcohol Deshidrogenasa/metabolismo , Biocatálisis , Catálisis , Cetonas/química
12.
Front Pharmacol ; 13: 951897, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105228

RESUMEN

Atrial arrhythmias, such as atrial fibrillation (AF), are a major mortality risk and a leading cause of stroke. The IP3 signalling pathway has been proposed as an atrial-specific target for AF therapy, and atrial IP3 signalling has been linked to the activation of calcium sensitive adenylyl cyclases AC1 and AC8. We investigated the involvement of AC1 in the response of intact mouse atrial tissue and isolated guinea pig atrial and sino-atrial node (SAN) cells to the α-adrenoceptor agonist phenylephrine (PE) using the selective AC1 inhibitor ST034307. The maximum rate change of spontaneously beating mouse right atrial tissue exposed to PE was reduced from 14.5% to 8.2% (p = 0.005) in the presence of 1 µM ST034307, whereas the increase in tension generated in paced left atrial tissue in the presence of PE was not inhibited by ST034307 (Control = 14.2%, ST034307 = 16.3%; p > 0.05). Experiments were performed using isolated guinea pig atrial and SAN cells loaded with Fluo-5F-AM to record changes in calcium transients (CaT) generated by 10 µM PE in the presence and absence of 1 µM ST034307. ST034307 significantly reduced the beating rate of SAN cells (0.34-fold decrease; p = 0.003) but did not inhibit changes in CaT amplitude in response to PE in atrial cells. The results presented here demonstrate pharmacologically the involvement of AC1 in the downstream response of atrial pacemaker activity to α-adrenoreceptor stimulation and IP3R calcium release.

13.
iScience ; 25(8): 104787, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35992086

RESUMEN

Despite much progress in developing better drugs, many patients with acute myeloid leukemia (AML) still die within a year of diagnosis. This is partly because it is difficult to identify therapeutic targets that are effective across multiple AML subtypes. One common factor across AML subtypes is the presence of a block in differentiation. Overcoming this block should allow for the identification of therapies that are not dependent on a specific mutation for their efficacy. Here, we used a phenotypic screen to identify compounds that stimulate differentiation in genetically diverse AML cell lines. Lead compounds were shown to decrease tumor burden and to increase survival in vivo. Using multiple complementary target deconvolution approaches, these compounds were revealed to be anti-mitotic tubulin disruptors that cause differentiation by inducing a G2-M mitotic arrest. Together, these results reveal a function for tubulin disruptors in causing differentiation of AML cells.

14.
J Clin Virol ; 155: 105248, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35952426

RESUMEN

Background The COVID-19 pandemic continues to devastate communities all over the world. The aim of this study was to evaluate the efficacy and safety of the test agent as a prophylaxis against SARS-CoV-2 infection in a population of high-risk healthcare workers. Methods The study was a multi-centre, prospective, double blind, randomized, placebo-controlled trial. Key eligibility criteria included absence of significant co-morbidity and no previous SARS-CoV-2 infection or vaccination. Participants were randomised to either the active agent nasal spray or placebo using computer generated random number tables. The nasal spray was administered 3 times daily over a 45 day course. The primary end point was the percentage of subjects who tested positive for IgGS (anti-spike, immunoglobulin G specific to the spike protein of SARS-CoV-2) at day 45. Results Between 16th April 2021 and 26th July 2021, 556 participants were analysed for the primary endpoint (275 Test; 281 Placebo). The test agent significantly reduced SARS-CoV-2 infection compared to placebo [36 cases (13.1%) Vs 97 cases (34.5%); OR 0.29 (95% CI; 0.18-0.45), p < 0.0001]. Fewer clinical symptoms were also seen in the test group [57 cases (17.6%) vs 112 cases (34.6%); OR 0.40, (95% CI; 0.27-0.59), p < 0.0001]. No harmful effects were associated with taking the test agent. Conclusion The test agent significantly reduced SARS-CoV-2 infection in healthcare workers, with 62% fewer infections when compared to placebo. It was found to be safe and well tolerated and offers a novel treatment option for prophylaxis against SARS-CoV-2 infection.


Asunto(s)
COVID-19 , COVID-19/prevención & control , Humanos , Rociadores Nasales , Pandemias/prevención & control , Estudios Prospectivos , SARS-CoV-2
15.
Br J Pharmacol ; 179(21): 4941-4957, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35703154

RESUMEN

BACKGROUND AND PURPOSE: Statins, inhibitors of HMG-CoA reductase, are mainstay treatment for hypercholesterolaemia. However, muscle pain and weakness prevent many patients from benefiting from their cardioprotective effects. We previously demonstrated that simvastatin activates skeletal ryanodine receptors (RyR1), an effect that could be important in initiating myopathy. Using a range of structurally diverse statin analogues, we examined structural features associated with RyR1 activation, aiming to identify statins lacking this property. EXPERIMENTAL APPROACH: Compounds were screened for RyR1 activity utilising [3 H]ryanodine binding. Mechanistic insight into RyR1 activity was studied by incorporating RyR1 channels from sheep, mouse or rabbit skeletal muscle into bilayers. KEY RESULTS: All UK-prescribed statins activated RyR1 at nanomolar concentrations. Cerivastatin, withdrawn from the market due to life-threatening muscle-related side effects, was more effective than currently-prescribed statins and possessed the unique ability to open RyR1 channels independently of cytosolic Ca2+ . We synthesised the one essential structural moiety that all statins must possess for HMG-CoA reductase inhibition, the R-3,5-dihydroxypentanoic acid unit, and it did not activate RyR1. We also identified five analogues retaining potent HMG-CoA reductase inhibition that inhibited RyR1 and four that lacked the ability to modulate RyR1. CONCLUSION AND IMPLICATIONS: That cerivastatin activates RyR1 most strongly supports the hypothesis that RyR1 activation is implicated in statin-induced myopathy. Demonstrating that statin regulation of RyR1 and HMG-CoA reductase are separable effects will allow the role of RyR1 in statin-induced myopathy to be further elucidated by the tool compounds we have identified, allowing development of effective cardioprotective statins with improved patient tolerance.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedades Musculares , Acilcoenzima A , Animales , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Ratones , Músculo Esquelético , Enfermedades Musculares/inducido químicamente , Enfermedades Musculares/tratamiento farmacológico , Conejos , Rianodina/farmacología , Canal Liberador de Calcio Receptor de Rianodina , Ovinos , Simvastatina/farmacología
16.
Bioorg Med Chem ; 69: 116812, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35772287

RESUMEN

A therapeutic approach that holds the potential to treat all Duchenne muscular dystrophy (DMD) patient populations is utrophin modulation. Ezutromid, a first generation utrophin modulator which was later found to act via antagonism of the arylhydrocarbon receptor, progressed to Phase 2 clinical trials. Although interim data showed target engagement and functional improvements, ezutromid ultimately failed to meet its clinical endpoints. We recently described the identification of a new class of hydrazide utrophin modulators which has a different mechanism of action to ezutromid. In this study we report our early optimisation studies on this hydrazide series. The new analogues had significantly improved potency in cell-based assays, increased sp3 character and reduced lipophilicity, which also improved their physicochemical properties. A representative new analogue combining these attributes increased utrophin protein in dystrophic mouse cells showing it can be used as a chemical tool to reveal new insights regarding utrophin upregulation as a strategy for DMD therapeutic intervention.


Asunto(s)
Distrofia Muscular de Duchenne , Animales , Hidrazinas/farmacología , Hidrazinas/uso terapéutico , Ratones , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Relación Estructura-Actividad , Regulación hacia Arriba , Utrofina/genética , Utrofina/metabolismo , Utrofina/uso terapéutico
18.
Mar Environ Res ; 176: 105614, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35381507

RESUMEN

Many coastal species move between estuarine and coastal environments throughout their life. Migration patterns develop as a result of ecology and evolution and must be understood to effectively manage harvested stocks. This study examined movements across estuarine and coastal marine habitats in adult Mulloway (Argyrosomus japonicus); a commercially, indigenous and recreationally harvested sciaenid of south-eastern Australia. Chemical profiles across the otolith (ear bone) were used to examine transitions between estuary and marine habitats over life history. Patterns in otolith Ba:Ca concentrations indicated that the majority of fish migrated between estuary and marine habitats, but a small proportion of fish appeared to remain in either the estuary or the marine habitat. Such movements may potentially be driven by a range of biological and environmental factors. This approach allows questions about the life history and habitat use of Mulloway to be addressed, which will aid management and provide a platform for future research on Mulloway, other sciaenid's and coastal migratory species.


Asunto(s)
Ecosistema , Membrana Otolítica , Animales , Estuarios , Peces , Estadios del Ciclo de Vida
19.
Bioorg Med Chem Lett ; 61: 128601, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35123003

RESUMEN

Therapeutic approaches to stimulate regeneration and repair have the potential to transform healthcare and improve outcomes for patients suffering from numerous chronic degenerative diseases. To date most approaches have involved the transplantation of therapeutic cells, and while there have been a small number of clinical approvals, major hurdles exist to the routine adoption of such therapies. In recent years humans and other mammals have been shown to possess a regenerative capacity across multiple tissues and organs, and an innate regenerative and repair response has been shown to be activated in these organs in response to injury. These realisations have inspired a transformative approach in regenerative medicine: the development of new agents to directly target these innate regeneration and repair pathways. In this article we will review the current state of the art in the discovery of small molecule modulators of regeneration and their translation towards therapeutic agents, focussing specifically on the areas of neuroregeneration and cardiac regeneration.


Asunto(s)
Enfermedades Neurodegenerativas/tratamiento farmacológico , Medicina Regenerativa , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Animales , Enfermedad Crónica , Humanos , Bibliotecas de Moléculas Pequeñas/química
20.
ACS Med Chem Lett ; 13(2): 262-270, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35173892

RESUMEN

Palladium-catalyzed reactions are among the most commonly used procedures in organic synthesis. The products have a range of uses, including as intermediates in total synthesis and as screening compounds for drug discovery or agrochemical projects. Despite the known and potentially deleterious effects of low-level metal impurities in biological assays, the quantification of metal remaining in reaction products to verify the effective removal of the transition element is rarely reported. Using palladium as an exemplar, we describe a pilot study that for the first time quantifies residual metal levels in reaction products following increasingly rigorous purification protocols. Our results demonstrate that significant levels of residual palladium can remain in isolated reaction products following chromatographic purification, and only by using a subsequent metal scavenging step are they reliably reduced to a low level. Finally, we provide a set of simple guidelines that should minimize the potential for issues associated with residual palladium in reaction products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...