Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 436(12): 168603, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38729259

RESUMEN

OXA-66 is a member of the OXA-51 subfamily of class D ß-lactamases native to the Acinetobacter genus that includes Acinetobacter baumannii, one of the ESKAPE pathogens and a major cause of drug-resistant nosocomial infections. Although both wild type OXA-66 and OXA-51 have low catalytic activity, they are ubiquitous in the Acinetobacter genomes. OXA-51 is also remarkably thermostable. In addition, newly emerging, single and double amino acid variants show increased activity against carbapenems, indicating that the OXA-51 subfamily is growing and gaining clinical significance. In this study, we used molecular dynamics simulations, X-ray crystallography, and thermal denaturation data to examine and compare the dynamics of OXA-66 wt and its gain-of-function variants: I129L (OXA-83), L167V (OXA-82), P130Q (OXA-109), P130A, and W222L (OXA-234). Our data indicate that OXA-66 wt also has a high melting temperature, and its remarkable stability is due to an extensive and rigid hydrophobic bridge formed by a number of residues around the active site and harbored by the three loops, P, Ω, and ß5-ß6. Compared to the WT enzyme, the mutants exhibit higher flexibility only in the loop regions, and are more stable than other robust carbapenemases, such as OXA-23 and OXA-24/40. All the mutants show increased rotational flexibility of residues I129 and W222, which allows carbapenems to bind. Overall, our data support the hypothesis that structural features in OXA-51 and OXA-66 promote evolution of multiple highly stable variants with increased clinical relevance in A. baumannii.

2.
NPJ Parkinsons Dis ; 8(1): 61, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610264

RESUMEN

ß2-adrenoreceptor (ß2AR) agonists have been associated with a decreased risk of developing Parkinson's disease (PD) and are hypothesized to decrease expression of both alpha-synuclein mRNA (Snca) and protein (α-syn). Effects of ß2AR agonist clenbuterol on the levels of Snca mRNA and α-syn protein were evaluated in vivo (rats and mice) and in rat primary cortical neurons by two independent laboratories. A modest decrease in Snca mRNA in the substantia nigra was observed after a single acute dose of clenbuterol in rats, however, this decrease was not maintained after multiple doses. In contrast, α-syn protein levels remained unchanged in both single and multiple dosing paradigms. Furthermore, clenbuterol did not decrease Snca in cultured rat primary cortical neurons, or decrease Snca or α-syn in mice. Additionally, compared to the single-dose paradigm, repeat dosing resulted in substantially lower levels of clenbuterol in plasma and brain tissue in rodents. Based on our observations of a transient decrease in Snca and no effect on α-syn protein in this preclinical study, these data support the conclusion that clenbuterol is not likely a viable disease-modifying strategy for PD.

3.
Parkinsonism Relat Disord ; 89: 41-47, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34218047

RESUMEN

BACKGROUND: Alpha-synuclein (α-syn) preformed fibril (PFF)-induced pathology can be used to study the features and progression of synucleinopathies, such as Parkinson's disease. Intrastriatal injection of mouse α-syn PFFs produce accumulation of α-syn pathology in both mice and rats. Previous studies in mice have revealed that greater sequence homology between the α-syn amino acid sequence used to produce PFFs with that of the endogenous host α-syn increases α-syn pathology in vivo. NEW METHODS: Based on the prediction that greater sequence homology will result in more α-syn pathology, PFFs generated from recombinant rat α-syn (rPFFs) were used instead of PFFs produced from recombinant mouse α-syn (mPFFs), which are normally used in the model. Rats received unilateral intrastriatal injections of either rPFFs or mPFFs and accumulation of α-syn phosphorylated at serine 129 (pSyn) was examined at 1-month post-surgery. RESULTS: Rats injected with mPFFs exhibited abundant accumulation of α-syn inclusions in the substantia nigra and cortical regions, whereas in rats injected with rPFFs had significantly fewer SNpc neurons containing pSyn inclusions (≈60% fewer) and little, if any, pSyn inclusions were observed in the cortex. CONCLUSIONS: Our results suggest that additional factors beyond the degree of sequence homology between host α-syn and injected recombinant α-syn impact efficiency of seeding and subsequent inclusion formation. More practically, these findings caution against the use of rPFFs in the rat preformed fibril model.


Asunto(s)
Sinucleinopatías/metabolismo , Sinucleinopatías/patología , alfa-Sinucleína , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Ratones , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Ratas , Proteínas Recombinantes , Sustancia Negra/metabolismo , Sustancia Negra/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA