Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Eur J Neurol ; 31(8): e16316, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38716751

RESUMEN

BACKGROUND AND PURPOSE: The use of multiple tests, including spirometry, arterial blood gas (ABG) analysis and overnight oximetry (OvOx), is highly recommended to monitor the respiratory function of patients with motor neuron disease (MND). In this study, we propose a composite score to simplify the respiratory management of MND patients and better stratify their prognosis. MATERIALS AND METHODS: We screened the clinical charts of 471 non-ventilated MND patients referred to the Neuro-rehabilitation Unit of the San Raffaele Scientific Institute of Milan (January 2001-December 2019), collecting spirometric, ABG and OvOx parameters. To evaluate the prognostic role of each measurement, univariate Cox regression for death/tracheostomy was performed, and the variables associated with survival were selected to design a scoring system. Univariate and multivariate Cox regression analyses were then carried out to evaluate the prognostic role of the score. Finally, results were replicated in an independent cohort from the Turin ALS Center. RESULTS: The study population included 450 patients. Six measurements were found to be significantly associated with survival and were selected to design a scoring system (maximum score = 8 points). Kaplan-Meier analysis showed significant stratification of survival and time to non-invasive mechanical ventilation adaptation according to score values, and multivariate analysis confirmed the independent effect of the respiratory score on survival of each cohort. CONCLUSION: Forced vital capacity, ABG and OvOx parameters provide complementary information for the respiratory management and prognosis of MND patients and the combination of these parameters into a single score might help neurologists predict prognosis and guide decisions on the timing of the implementation of different diagnostic or therapeutic approaches.


Asunto(s)
Análisis de los Gases de la Sangre , Enfermedad de la Neurona Motora , Oximetría , Espirometría , Humanos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Análisis de los Gases de la Sangre/métodos , Oximetría/métodos , Enfermedad de la Neurona Motora/sangre , Enfermedad de la Neurona Motora/fisiopatología , Enfermedad de la Neurona Motora/diagnóstico , Pronóstico , Estudios Retrospectivos , Adulto
2.
Acta Neuropathol ; 147(1): 56, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478117

RESUMEN

The stimulator of interferon genes (STING) pathway has been implicated in neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis (ALS). While prior studies have focused on STING within immune cells, little is known about STING within neurons. Here, we document neuronal activation of the STING pathway in human postmortem cortical and spinal motor neurons from individuals affected by familial or sporadic ALS. This process takes place selectively in the most vulnerable cortical and spinal motor neurons but not in neurons that are less affected by the disease. Concordant STING activation in layer V cortical motor neurons occurs in a mouse model of C9orf72 repeat-associated ALS and frontotemporal dementia (FTD). To establish that STING activation occurs in a neuron-autonomous manner, we demonstrate the integrity of the STING signaling pathway, including both upstream activators and downstream innate immune response effectors, in dissociated mouse cortical neurons and neurons derived from control human induced pluripotent stem cells (iPSCs). Human iPSC-derived neurons harboring different familial ALS-causing mutations exhibit increased STING signaling with DNA damage as a main driver. The elevated downstream inflammatory markers present in ALS iPSC-derived neurons can be suppressed with a STING inhibitor. Our results reveal an immunophenotype that consists of innate immune signaling driven by the STING pathway and occurs specifically within vulnerable neurons in ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Células Madre Pluripotentes Inducidas , Enfermedad de Pick , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/metabolismo
3.
Mar Environ Res ; 196: 106415, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395681

RESUMEN

Environmental DNA (eDNA) techniques are emerging as promising tools for monitoring marine communities. However, they have not been applied to study the integrated effects of anthropogenic pressures on marine biodiversity. This study examined the relationships between demersal community species composition, key environmental features, and anthropogenic impacts such as fishing effort and seafloor litter using eDNA data in the central Tyrrhenian Sea. The results indicated that both fishing effort and seafloor litter influenced species composition and diversity. The adaptive traits of marine species played a critical role in their response to debris accumulation and fishing. Mobile species appeared to use relocation strategies, while sessile species showed flexibility in the face of disturbance. Epibiotic species relied on passive transport. The use of eDNA-based methods is a valuable resource for monitoring anthropogenic impacts during scientific surveys, enhancing our ability to monitor marine ecosystems and more effectively assess the effects of pollution.


Asunto(s)
ADN Ambiental , Ecosistema , Código de Barras del ADN Taxonómico/métodos , Biodiversidad , Contaminación Ambiental , Monitoreo del Ambiente/métodos
4.
Neurology ; 102(2): e207946, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38165325

RESUMEN

BACKGROUND AND OBJECTIVES: There is currently no validated disease-stage biomarker for amyotrophic lateral sclerosis (ALS). The identification of quantitative and reproducible markers of disease stratification in ALS is fundamental for study design definition and inclusion of homogenous patient cohorts into clinical trials. Our aim was to assess the rearrangements of structural and functional brain connectivity underlying the clinical stages of ALS, to suggest objective, reproducible measures provided by MRI connectomics mirroring disease staging. METHODS: In this observational study, patients with ALS and healthy controls (HCs) underwent clinical evaluation and brain MRI on a 3T scanner. Patients were classified into 4 groups, according to the King's staging system. Structural and functional brain connectivity matrices were obtained using diffusion tensor and resting-state fMRI data, respectively. Whole-brain network-based statistics (NBS) analysis and comparisons of intraregional and inter-regional connectivity values using analysis of covariance models were performed between groups. Correlations between MRI and clinical/cognitive measures were tested using Pearson coefficient. RESULTS: One hundred four patients with ALS and 61 age-matched and sex-matched HCs were included. NBS and regional connectivity analyses demonstrated a progressive decrease of intranetwork and internetwork structural connectivity of sensorimotor regions at increasing ALS stages in our cohort, compared with HCs. By contrast, functional connectivity showed divergent patterns between King's stages 3 (increase in basal ganglia and temporal circuits [p = 0.04 and p = 0.05, respectively]) and 4 (frontotemporal decrease [p = 0.03]), suggesting a complex interplay between opposite phenomena in late stages of the disease. Intraregional sensorimotor structural connectivity was correlated with ALS Functional Rating Scale-revised (ALSFRS-r) score (r = 0.31, p < 0.001) and upper motor neuron burden (r = -0.25, p = 0.01). Inter-regional frontal-sensorimotor structural connectivity was also correlated with ALSFRS-r (r = 0.24, p = 0.02). No correlations with cognitive measures were found. DISCUSSION: MRI of the brain allows to demonstrate and quantify increasing disruption of structural connectivity involving the sensorimotor networks in ALS, mirroring disease stages. Frontotemporal functional disconnection seems to characterize only advanced disease phases. Our findings support the utility of MRI connectomics to stratify patients and stage brain pathology in ALS in a reproducible way, which may mirror clinical progression.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Ganglios Basales , Encéfalo/diagnóstico por imagen , Difusión , Neuronas Motoras , Masculino , Femenino
5.
J Neurol ; 271(3): 1342-1354, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37930481

RESUMEN

BACKGROUND AND OBJECTIVES: Amyotrophic lateral sclerosis associated with mutations in SOD1 (SOD1-ALS) might be susceptible to specific treatment. The aim of the study is to outline the clinical features of SOD1-ALS patients by comparing them to patients without ALS major gene variants and patients with variants in other major ALS genes. Defining SOD1-ALS phenotype may assist clinicians in identifying patients who should be prioritized for genetic testing. METHODS: We performed an extensive literature research including original studies which reported the clinical features of SOD1-ALS and at least one of the following patient groups: C9ORF72 hexanucleotide repeat expansion (C9-ALS), TARDBP (TARDBP-ALS), FUS (FUS-ALS) or patients without a positive test for a major-ALS gene (N-ALS). A random effects meta-analytic model was applied to clinical data extracted encompassing sex, site and age of onset. To reconstruct individual patient survival data, the published Kaplan-Meier curves were digitized. Data were measured as odds ratio (OR) or standardized mean difference (SMD) as appropriate. Median survival was compared between groups. RESULTS: Twenty studies met the inclusion criteria. We identified 721 SOD1-ALS, 470 C9-ALS, 183 TARDBP-ALS, 113 FUS-ALS and 2824 N-ALS. SOD1-ALS showed a higher rate of spinal onset compared with N-ALS and C9-ALS (OR = 4.85, 95% CI = 3.04-7.76; OR = 10.47, 95% CI = 4.32-27.87) and an earlier onset compared with N-ALS (SMD = - 0.45, 95% CI = - 0.72 to - 0.18). SOD1-ALS had a similar survival compared with N-ALS (p = 0.14), a longer survival compared with C9-ALS (p < 0.01) and FUS-ALS (p = 0.019) and a shorter survival compared with TARDBP-ALS (p < 0.01). DISCUSSION: This study indicates the presence of a specific SOD1-ALS phenotype. Insights in SOD1-ALS clinical features are important in genetic counseling, disease prognosis and support patients' stratification in clinical trials.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Fenotipo , Pruebas Genéticas , Mutación , Proteína C9orf72/genética , Proteína FUS de Unión a ARN/genética
6.
Environ Pollut ; 342: 123028, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38012965

RESUMEN

The progressive increase of marine macro-litter on the bottom of the Mediterranean Sea is an urgent problem that needs accurate information and guidance to identify those areas most at risk of accumulation. In the absence of dedicated monitoring programs, an important source of opportunistic data is fishery-independent monitoring campaigns of demersal resources. These data have long been used but not yet extensively. In this paper, MEDiterranean International Trawl Survey (MEDITS) data was supplemented with 18 layers of information related to major environmental (e.g. depth, sea water and wind velocity, sea waves) and anthropogenic (e.g. river inputs, shipping lanes, urban areas and ports, fishing effort) forcings that influence seafloor macro-litter distribution. The Random Forest (RF), a machine learning approach, was applied to: i) model the distribution of several litter categories at a high spatial resolution (i.e. 1 km2); ii) identify major accumulation hot spots and their temporal trends. Results indicate that RF is a very effective approach to model the distribution of marine macro-litter and provides a consistent picture of the heterogeneous distribution of different macro-litter categories. The most critical situation in the study area was observed in the north-eastern part of the western basin. In addition, the combined analysis of weight and density data identified a tendency for lighter items to accumulate in areas (such as the northern part of the Tyrrhenian Sea) with more stagnant currents. This approach, based on georeferenced information widely available in public databases, seems a natural candidate to be applied in other basins as a support and complement tool to field monitoring activities and strategies for protection and remediation of the most impacted areas.


Asunto(s)
Monitoreo del Ambiente , Plásticos , Plásticos/análisis , Monitoreo del Ambiente/métodos , Mar Mediterráneo , Agua de Mar , Navíos , Residuos/análisis
7.
Small Methods ; 7(11): e2300447, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37670547

RESUMEN

In-flow phase-contrast tomography provides a 3D refractive index of label-free cells in cytometry systems. Its major limitation, as with any quantitative phase imaging approach, is the lack of specificity compared to fluorescence microscopy, thus restraining its huge potentialities in single-cell analysis and diagnostics. Remarkable results in introducing specificity are obtained through artificial intelligence (AI), but only for adherent cells. However, accessing the 3D fluorescence ground truth and obtaining accurate voxel-level co-registration of image pairs for AI training is not viable for high-throughput cytometry. The recent statistical inference approach is a significant step forward for label-free specificity but remains limited to cells' nuclei. Here, a generalized computational strategy based on a self-consistent statistical inference to achieve intracellular multi-specificity is shown. Various subcellular compartments (i.e., nuclei, cytoplasmic vacuoles, the peri-vacuolar membrane area, cytoplasm, vacuole-nucleus contact site) can be identified and characterized quantitatively at different phases of the cells life cycle by using yeast cells as a biological model. Moreover, for the first time, virtual reality is introduced for handling the information content of multi-specificity in single cells. Full fruition is proofed for exploring and interacting with 3D quantitative biophysical parameters of the identified compartments on demand, thus opening the route to a metaverse for 3D microscopy.


Asunto(s)
Inteligencia Artificial , Saccharomyces cerevisiae , Citometría de Flujo/métodos , Citoplasma , Microscopía Fluorescente
8.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569475

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with variable phenotypic expressions which has been associated with autonomic dysfunction. The cardiovascular system seems to be affected especially in the context of bulbar involvement. We describe four new cases of Tako-Tsubo syndrome (TTS) in ALS patients with an appraisal of the literature. We present a late-stage ALS patient with prominent bulbar involvement that presented TTS during hospitalization. We then retrospectively identify three additional ALS-TTS cases reporting relevant clinical findings. TTS cardiomyopathy has been observed in different acute neurological conditions, and the co-occurrence of ALS and TTS has already been reported. Cardiovascular autonomic dysfunctions have been described in ALS, especially in the context of an advanced diseases and with bulbar involvement. Noradrenergic hyperfunction linked to sympathetic denervation and ventilatory deficits coupled in different instances with a trigger event could play a synergistic role in the development of TTS in ALS. Sympathetic hyperfunctioning and ventilatory deficits in conjunction with cardiac autonomic nerves impairment may play a role in the development of TTS in a context of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Disautonomías Primarias , Cardiomiopatía de Takotsubo , Humanos , Esclerosis Amiotrófica Lateral/complicaciones , Cardiomiopatía de Takotsubo/complicaciones , Enfermedades Neurodegenerativas/complicaciones , Estudios Retrospectivos
9.
Biomedicines ; 11(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37371694

RESUMEN

Proteinopathy and neuroinflammation are two main hallmarks of neurodegenerative diseases. They also represent rare common events in an exceptionally broad landscape of genetic, environmental, neuropathologic, and clinical heterogeneity present in patients. Here, we aim to recount the emerging trends in amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD) spectrum disorder. Our review will predominantly focus on neuroinflammation and systemic immune imbalance in ALS and FTD, which have recently been highlighted as novel therapeutic targets. A common mechanism of most ALS and ~50% of FTD patients is dysregulation of TAR DNA-binding protein 43 (TDP-43), an RNA/DNA-binding protein, which becomes depleted from the nucleus and forms cytoplasmic aggregates in neurons and glia. This, in turn, via both gain and loss of function events, alters a variety of TDP-43-mediated cellular events. Experimental attempts to target TDP-43 aggregates or manipulate crosstalk in the context of inflammation will be discussed. Targeting inflammation, and the immune system in general, is of particular interest because of the high plasticity of immune cells compared to neurons.

10.
Eur J Radiol ; 164: 110849, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37141845

RESUMEN

PURPOSE: To investigate the impact of Prostate Imaging Quality (PI-QUAL) scores on the diagnostic performance of multiparametric MRI (mpMRI) in a targeted biopsy cohort. PATIENTS AND METHODS: 300 patients who underwent both mpMRI and biopsy were included. PI-QUAL scores were retrospectively assigned by two radiologists in consensus and were correlated to pre-biopsy PI-RADS scores and biopsy outcomes. Clinically significant prostate cancer (csPCa) was defined as ISUP grade ≥ 2. RESULTS: Image quality was optimal (PI-QUAL ≥ 4) in 249/300 (83%) and suboptimal (PI-QUAL < 4) in 51/300 (17%). The proportion of PI-RADS 3 scores referred for biopsy was higher in scans of suboptimal vs optimal quality (51% vs 33%). For PI-QUAL < 4 scans, the positive predictive value (PPV) was lower compared to PI-QUAL ≥ 4 (35% [95%CI: 22, 48] vs 48% [95%CI: 41, 55]; difference -13% [95%CI: -27, 2]; p 0.090), as was the detection rate of csPCa in both PI-RADS 3 and PI-RADS 4-5 (15% vs 23% and 56 vs 63%, respectively). The overall MRI quality increased over time. CONCLUSIONS: Scan quality may affect the diagnostic performance of prostate mpMRI in patients undergoing MRI-guided biopsy. Scans of suboptimal quality (PI-QUAL < 4) were associated with lower PPV for csPCa.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/patología , Próstata/diagnóstico por imagen , Próstata/patología , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos , Biopsia , Biopsia Guiada por Imagen/métodos
11.
Front Med (Lausanne) ; 10: 1133269, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910493

RESUMEN

Introduction: State of the art artificial intelligence (AI) models have the potential to become a "one-stop shop" to improve diagnosis and prognosis in several oncological settings. The external validation of AI models on independent cohorts is essential to evaluate their generalization ability, hence their potential utility in clinical practice. In this study we tested on a large, separate cohort a recently proposed state-of-the-art convolutional neural network for the automatic segmentation of intraprostatic cancer lesions on PSMA PET images. Methods: Eighty-five biopsy proven prostate cancer patients who underwent 68Ga PSMA PET for staging purposes were enrolled in this study. Images were acquired with either fully hybrid PET/MRI (N = 46) or PET/CT (N = 39); all participants showed at least one intraprostatic pathological finding on PET images that was independently segmented by two Nuclear Medicine physicians. The trained model was available at https://gitlab.com/dejankostyszyn/prostate-gtv-segmentation and data processing has been done in agreement with the reference work. Results: When compared to the manual contouring, the AI model yielded a median dice score = 0.74, therefore showing a moderately good performance. Results were robust to the modality used to acquire images (PET/CT or PET/MRI) and to the ground truth labels (no significant difference between the model's performance when compared to reader 1 or reader 2 manual contouring). Discussion: In conclusion, this AI model could be used to automatically segment intraprostatic cancer lesions for research purposes, as instance to define the volume of interest for radiomics or deep learning analysis. However, more robust performance is needed for the generation of AI-based decision support technologies to be proposed in clinical practice.

12.
Eur J Nucl Med Mol Imaging ; 50(8): 2548-2560, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36933074

RESUMEN

PURPOSE: The aim of this study is to investigate the role of [68Ga]Ga-PSMA-11 PET radiomics for the prediction of post-surgical International Society of Urological Pathology (PSISUP) grade in primary prostate cancer (PCa). METHODS: This retrospective study included 47 PCa patients who underwent [68Ga]Ga-PSMA-11 PET at IRCCS San Raffaele Scientific Institute before radical prostatectomy. The whole prostate was manually contoured on PET images and 103 image biomarker standardization initiative (IBSI)-compliant radiomic features (RFs) were extracted. Features were then selected using the minimum redundancy maximum relevance algorithm and a combination of the 4 most relevant RFs was used to train 12 radiomics machine learning models for the prediction of PSISUP grade: ISUP ≥ 4 vs ISUP < 4. Machine learning models were validated by means of fivefold repeated cross-validation, and two control models were generated to assess that our findings were not surrogates of spurious associations. Balanced accuracy (bACC) was collected for all generated models and compared with Kruskal-Wallis and Mann-Whitney tests. Sensitivity, specificity, and positive and negative predictive values were also reported to provide a complete overview of models' performance. The predictions of the best performing model were compared against ISUP grade at biopsy. RESULTS: ISUP grade at biopsy was upgraded in 9/47 patients after prostatectomy, resulting in a bACC = 85.9%, SN = 71.9%, SP = 100%, PPV = 100%, and NPV = 62.5%, while the best-performing radiomic model yielded a bACC = 87.6%, SN = 88.6%, SP = 86.7%, PPV = 94%, and NPV = 82.5%. All radiomic models trained with at least 2 RFs (GLSZM-Zone Entropy and Shape-Least Axis Length) outperformed the control models. Conversely, no significant differences were found for radiomic models trained with 2 or more RFs (Mann-Whitney p > 0.05). CONCLUSION: These findings support the role of [68Ga]Ga-PSMA-11 PET radiomics for the accurate and non-invasive prediction of PSISUP grade.


Asunto(s)
Radioisótopos de Galio , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/patología , Estudios Retrospectivos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos
13.
Neurology ; 101(8): 352-356, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-36927885

RESUMEN

OBJECTIVES: Differentiation between primary (PLS) and amyotrophic lateral sclerosis (ALS) entails relevant consequences for prognosis and management but is mostly unreliable at early stages. The objectives of the study are (1) to determine the features at onset that could help to differentiate between PLS and ALS, (2) to evaluate the diagnostic performance of an integrated serum biomarker panel, and (3) to identify the prognostic factors for patients presenting with upper motor neuron (UMN) syndrome. METHODS: We selected and retrospectively analyzed the clinical data of patients presenting with UMN syndrome. At the first evaluation, when available, serum biomarkers were measured using ultrasensitive single molecule array. RESULTS: The study population included 55 patients with PLS and 50 patients with ALS. Patients with PLS presented a longer time to first neurologic evaluation (PLS: 35.0 months, interquartile range [IQR] 17.0-38.0 months; ALS: 12.5 months, IQR 7.0-21.3 months; p < 0.01) and lower levels of neurofilament light chain (NfL) (PLS: 81.8 pg/mL, IQR 38.4-111.1 pg/mL; ALS: 155.9 pg/mL, IQR 85.1-366.4 pg/mL; p = 0.01). Two patients with PLS and 3 patients with ALS carried the C9orf72 expansion. NfL resulted an independent predictor of final diagnosis (odds ratio 1.01, 95% CI 1.00-1.02; p = 0.04) and an independent prognostic factor (hazard ratio 1.01, 95% CI 1.00-1.01; p < 0.01). DISCUSSION: NfL might help to differentiate patients with PLS from patients with ALS and to predict prognosis in patients with UMN syndrome.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedad de la Neurona Motora , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Estudios Retrospectivos , Neuronas Motoras , Biomarcadores , Pronóstico , Enfermedad de la Neurona Motora/diagnóstico
14.
J Neurol ; 270(2): 1127-1134, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36242626

RESUMEN

OBJECTIVES: We describe brain structural damage and cognitive profile evolution of an adult patient with 17q21.31 microduplication, a rare condition associated with psychomotor delay, behavioural disturbances and poor social interaction. METHODS: A.B., 57 years old, male, displayed obsessive and repetitive behaviours, irritability, scarce hygiene and memory loss at disease onset. He had strong familiarity for adult-onset behavioural alterations (his father and sister) and neuropsychiatric conditions (his son). Blood and cerebrospinal fluid (CSF) samples revealed 17q21.31 microduplication, shared also by his son and sister, and raised CSF tau, respectively. He was hospitalized 1 year after disease onset and underwent an MRI scan and a neuropsychological assessment, the latter being repeated 7 months later. To quantitatively investigate patient's grey matter (GM) volume, 16 age- and education-matched male controls were selected and voxel-based morphometry analysis was performed. RESULTS: During hospitalization, his behavioural profile was characterized by anosognosia, impulsivity, apathy and aggressiveness. Cognitive testing revealed main attentive-executive disturbances and difficulties in understanding non-literal language. Compared to controls, A.B. had greater GM atrophy mainly in the right hemisphere, involving amygdala, hippocampus, inferior/superior temporal gyri and temporal pole. He received a diagnosis of early onset dementia. After 7 months, he developed empathy loss, perseverative behaviour, changes in eating habits and worsening in executive-attentive abilities. CONCLUSIONS: In A.B., 17q21.31 microduplication caused a neurodegenerative condition with prevalent right temporal damage, raised CSF tau level, behavioural disturbances, memory impairment, attentive-executive and abstract language dysfunctions and fast disease progression, thus reflecting the complex interaction between such genetic substrate and clinical phenotypes.


Asunto(s)
Encéfalo , Demencia , Masculino , Humanos , Encéfalo/diagnóstico por imagen , Sustancia Gris , Corteza Cerebral , Pruebas Neuropsicológicas , Imagen por Resonancia Magnética , Demencia/diagnóstico , Cognición
15.
Mar Pollut Bull ; 185(Pt A): 114244, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36283155

RESUMEN

Plastics are one of the most used materials in the world. Their indiscriminate use and inappropriate disposal have led to inevitable impacts, for instance ingestion, on the environment arousing the attention of the global community. In addition, plastic ingestion studies are often written in scientific jargon or hidden behind paywalls, which makes these studies inaccessible. GLOVE is an online and open-access dashboard database available at gloveinitiative.shinyapps.io/Glove/ to support scientists, decision-makers, and society with information collected from plastic ingestion studies. The platform was created in the R environment, with a web interface developed through Shiny. It already comprises 530 studies, including all biological groups, with 245,366 individual records of 1458 species found in marine, freshwater, and terrestrial environments. The main goal of the GLOVE dashboard database is to improve data accessibility by being a scientifically useful grounded tool for designing effective and innovative actions in the current scenario of upcoming global and local agreements and actions on plastic pollution.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Contaminación Ambiental , Agua Dulce , Ingestión de Alimentos , Contaminantes Químicos del Agua/análisis
16.
Mar Pollut Bull ; 183: 114062, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36075115

RESUMEN

Although considerable research progress on the effects of anthropogenic disturbance in the deep sea has been made in recent years, our understanding of these impacts at community level remains limited. Here, we studied deep-sea assemblages of Sicily (Mediterranean Sea) subject to different intensities of benthic trawling using environmental DNA (eDNA) metabarcoding and taxonomic identification of meiofauna communities. Firstly, eDNA metabarcoding data did not detect trawling impacts using alpha diversity whereas meiofauna data detected a significant effect of trawling. Secondly, both eDNA and meiofauna data detected significantly different communities across distinct levels of trawling intensity when we examined beta diversity. Taxonomic assignment of the eDNA data revealed that Bryozoa was present only at untrawled sites, highlighting their vulnerability to trawling. Our results provide evidence for community-wide impacts of trawling, with different trawling intensities leading to distinct deep-sea communities. Finally, we highlight the need for further studies to unravel understudied deep-sea biodiversity.


Asunto(s)
ADN Ambiental , Biodiversidad , Código de Barras del ADN Taxonómico , Explotaciones Pesqueras , Caza , Mar Mediterráneo
17.
Acta Biomed ; 93(4): e2022212, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36043970

RESUMEN

Restrictions to human mobility had a significant role in limiting SARS-CoV-2 spread. It has been suggested that seasonality might affect viral transmissibility. Our study retrospectively investigates the combined effect that seasonal environmental factors and human mobility played on transmissibility of SARS-CoV-2 in Lombardy, Italy, in 2020. Environmental data were collected from accredited open-source web services. Aggregated mobility data for different points of interests were collected from Google Community Reports. The Reproduction number (Rt), based on the weekly counts of confirmed symptomatic COVID-19, non-imported cases, was used as a proxy for SARS-CoV-2 transmissibility. Assuming a non-linear correlation between selected variables, we used a Generalized Additive Model (GAM) to investigate with univariate and multivariate analyses the association between seasonal environmental factors (UV-index, temperature, humidity, and atmospheric pressure), location-specific mobility indices, and Rt. UV-index was the most effective environmental variable in predicting Rt. An optimal two-week lag-effect between changes in explanatory variables and Rt was selected. The association between Rt variations and individually taken mobility indices differed: Grocery & Pharmacy, Transit Station and Workplaces displayed the best performances in predicting Rt when individually added to the multivariate model together with UV-index, accounting for 85.0%, 85.5% and 82.6% of Rt variance, respectively. According to our results, both seasonality and social interaction policies played a significant role in curbing the pandemic. Non-linear models including UV-index and location-specific mobility indices can predict a considerable amount of SARS-CoV-2 transmissibility in Lombardy during 2020, emphasizing the importance of social distancing policies to keep viral transmissibility under control, especially during colder months.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Humanos , Pandemias , Distanciamiento Físico , Estudios Retrospectivos , SARS-CoV-2
18.
BMC Biol ; 20(1): 171, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918713

RESUMEN

BACKGROUND: The high-mobility group Hmga family of proteins are non-histone chromatin-interacting proteins which have been associated with a number of nuclear functions, including heterochromatin formation, replication, recombination, DNA repair, transcription, and formation of enhanceosomes. Due to its role based on dynamic interaction with chromatin, Hmga2 has a pathogenic role in diverse tumors and has been mainly studied in a cancer context; however, whether Hmga2 has similar physiological functions in normal cells remains less explored. Hmga2 was additionally shown to be required during the exit of embryonic stem cells (ESCs) from the ground state of pluripotency, to allow their transition into epiblast-like cells (EpiLCs), and here, we use that system to gain further understanding of normal Hmga2 function. RESULTS: We demonstrated that Hmga2 KO pluripotent stem cells fail to develop into EpiLCs. By using this experimental system, we studied the chromatin changes that take place upon the induction of EpiLCs and we observed that the loss of Hmga2 affects the histone mark H3K27me3, whose levels are higher in Hmga2 KO cells. Accordingly, a sustained expression of polycomb repressive complex 2 (PRC2), responsible for H3K27me3 deposition, was observed in KO cells. However, gene expression differences between differentiating wt vs Hmga2 KO cells did not show any significant enrichments of PRC2 targets. Similarly, endogenous Hmga2 association to chromatin in epiblast stem cells did not show any clear relationships with gene expression modification observed in Hmga2 KO. Hmga2 ChIP-seq confirmed that this protein preferentially binds to the chromatin regions associated with nuclear lamina. Starting from this observation, we demonstrated that nuclear lamina underwent severe alterations when Hmga2 KO or KD cells were induced to exit from the naïve state and this phenomenon is accompanied by a mislocalization of the heterochromatin mark H3K9me3 within the nucleus. As nuclear lamina (NL) is involved in the organization of 3D chromatin structure, we explored the possible effects of Hmga2 loss on this phenomenon. The analysis of Hi-C data in wt and Hmga2 KO cells allowed us to observe that inter-TAD (topologically associated domains) interactions in Hmga2 KO cells are different from those observed in wt cells. These differences clearly show a peculiar compartmentalization of inter-TAD interactions in chromatin regions associated or not to nuclear lamina. CONCLUSIONS: Overall, our results indicate that Hmga2 interacts with heterochromatic lamin-associated domains, and highlight a role for Hmga2 in the crosstalk between chromatin and nuclear lamina, affecting the establishment of inter-TAD interactions.


Asunto(s)
Membrana Nuclear , Células Madre Pluripotentes , Cromatina/genética , Cromatina/metabolismo , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Heterocromatina/metabolismo , Histonas/genética , Membrana Nuclear/metabolismo , Células Madre Pluripotentes/metabolismo , Complejo Represivo Polycomb 2/genética
19.
Front Neurosci ; 16: 833051, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495032

RESUMEN

Introduction: In the last few years, different studies highlighted a significant enrichment of NEK1 loss of function (LoF) variants in amyotrophic lateral sclerosis (ALS), and an additional role for the p.Arg261His missense variant in the disease susceptibility. Several other missense variants have been described so far, whose pathogenic relevance remains however unclear since many of them have been reported in both patients and controls. This study aimed to investigate the presence of NEK1 variants and their correlation with phenotype in a cohort of Italian patients with ALS. Methods: We sequenced a cohort of 350 unrelated Italian patients with ALS by next-generation sequencing (NGS) and then we analyzed the clinical features of NEK1 carriers. Results: We detected 20 different NEK1 rare variants (four LoF and 16 missense) in 33 unrelated patients with sporadic ALS (sALS). The four LoF variants (two frameshift and two splice-site variants) were all novel. The p.Arg261His missense variant was enriched in the patients' cohort (p < 0.001). Excluding this variant from counting, the difference in the frequency of NEK1 rare missense variants between patients and controls was not statistically significant. NEK1 carriers had a higher frequency of flail arm (FA) phenotype compared with the other patients of the cohort (29.2% vs. 6.4%). Nine NEK1 carriers (37.5%) also harbored variants in other ALS-related genes. Conclusion: This study confirms that NEK1 LoF and p.Arg261. His missense variants are associated with ALS in an Italian ALS cohort and suggests a correlation between the presence of NEK1 variants and FA phenotype.

20.
Eur J Neurol ; 29(7): 1930-1939, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35263489

RESUMEN

BACKGROUND AND PURPOSE: This study was undertaken to determine the diagnostic and prognostic value of a panel of serum biomarkers and to correlate their concentrations with several clinical parameters in a large cohort of patients with amyotrophic lateral sclerosis (ALS). METHODS: One hundred forty-three consecutive patients with ALS and a control cohort consisting of 70 patients with other neurodegenerative disorders (DEG), 70 patients with ALS mimic disorders (ALSmd), and 45 healthy controls (HC) were included. Serum neurofilament light chain (NfL), ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1), glial fibrillary acidic protein (GFAP), and total tau protein levels were measured using ultrasensitive single molecule array. RESULTS: NfL correlated with disease progression rate (p < 0.001) and with the measures of upper motor neuron burden (p < 0.001). NfL was higher in the ALS patients with classic and pyramidal phenotype. GFAP was raised in ALS with cognitive-behavioral impairment compared with ALS with normal cognition. NfL displayed the best diagnostic performance in discriminating ALS from HC (area under the curve [AUC] = 0.990), DEG (AUC = 0.946), and ALSmd (AUC = 0.850). UCHL1 performed well in distinguishing ALS from HC (AUC = 0.761), whereas it was not helpful in differentiating ALS from DEG and ALSmd. In multivariate analysis, NfL (p < 0.001) and UCHL1 (p = 0.038) were independent prognostic factors. Survival analysis combining NfL and UCHL1 effectively stratified patients with lower NfL levels (p < 0.001). CONCLUSIONS: NfL is a useful biomarker for the diagnosis of ALS and the strongest predictor of survival. UCHL1 is an independent prognostic factor helpful in stratifying survival in patients with low NfL levels, likely to have slowly progressive disease. GFAP reflects extramotor involvement, namely cognitive impairment or frontotemporal dementia.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/diagnóstico , Biomarcadores , Estudios de Cohortes , Humanos , Proteínas de Neurofilamentos , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...