Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(4): 3004-3017, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38301029

RESUMEN

NOD1 and NOD2 are members of the pattern recognition receptors involved in the innate immune response. Overactivation of NOD1 is implicated in inflammatory disorders, multiple sclerosis, and cancer cell metastases. NOD1 antagonists would represent valuable pharmacological tools to gain further insight into protein roles, potentially leading to new therapeutic strategies. We herein report the expansion of the chemical space of NOD1 antagonists via a multicomponent synthetic approach affording a novel chemotype, namely, 2,3-diaminoindoles. These efforts resulted in compound 37, endowed with low micromolar affinity toward NOD1. Importantly, a proof-of-evidence of direct binding to NOD1 of Noditinib-1 and derivative 37 is provided here for the first time. Additionally, the combination of computational studies and NMR-based displacement assays enabled the characterization of the binding modality of 37 to NOD1, thus providing key unprecedented knowledge for the design of potent and selective NOD1 antagonists.


Asunto(s)
Inmunidad Innata , Proteína Adaptadora de Señalización NOD1 , Proteína Adaptadora de Señalización NOD2/metabolismo , Indoles/química , Indoles/metabolismo
2.
Arch Pharm (Weinheim) ; 357(3): e2300583, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38110703

RESUMEN

Immunotherapy has emerged as a game-changing approach for cancer treatment. Although monoclonal antibodies (mAbs) targeting the programmed cell death protein 1/programmed cell death protein 1 ligand 1 (PD-1/PD-L1) axis have entered the market revolutionizing the treatment landscape of many cancer types, small molecules, although presenting several advantages including the possibility of oral administration and/or reduced costs, struggled to enter in clinical trials, suffering of water insolubility and/or inadequate potency compared with mAbs. Thus, the search for novel scaffolds for both the design of effective small molecules and possible synergistic strategies is an ongoing field of interest. In an attempt to find novel chemotypes, a virtual screening approach was employed, resulting in the identification of new chemical entities with a certain binding capability, the most versatile of which was the benzimidazole-containing compound 10. Through rational design, a small library of its derivatives was synthesized and evaluated. The homogeneous time-resolved fluorescence (HTRF) assay revealed that compound 17 shows the most potent inhibitory activity (IC50 ) in the submicromolar range and notably, differently from the major part of PD-L1 inhibitors, exhibits satisfactory water solubility properties. These findings highlight the potential of benzimidazole-based compounds as novel promising candidates for PD-L1 inhibition.


Asunto(s)
Compuestos de Bifenilo , Inhibidores de Puntos de Control Inmunológico , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1 , Ligandos , Relación Estructura-Actividad , Bencimidazoles/farmacología , Agua
3.
Ann Rheum Dis ; 82(11): 1415-1428, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37580108

RESUMEN

OBJECTIVES: Interleukin (IL) 17s cytokines are key drivers of inflammation that are functionally dysregulated in several human immune-mediated inflammatory diseases (IMIDs), such as rheumatoid arthritis (RA), psoriasis and inflammatory bowel disease (IBD). Targeting these cytokines has some therapeutic benefits, but issues associated with low therapeutic efficacy and immunogenicity for subgroups of patients or IMIDs reduce their clinical use. Therefore, there is an urgent need to improve the coverage and efficacy of antibodies targeting IL-17A and/or IL-17F and IL-17A/F heterodimer. METHODS AND RESULTS: Here, we initially identified a bioactive 20 amino acid IL-17A/F-derived peptide (nIL-17) that mimics the pro-inflammatory actions of the full-length proteins. Subsequently, we generated a novel anti-IL-17 neutralising monoclonal antibody (Ab-IPL-IL-17) capable of effectively reversing the pro-inflammatory, pro-migratory actions of both nIL-17 and IL-17A/F. Importantly, we demonstrated that Ab-IPL-IL-17 has less off-target effects than the current gold-standard biologic, secukinumab. Finally, we compared the therapeutic efficacy of Ab-IPL-IL-17 with reference anti-IL-17 antibodies in preclinical murine models and samples from patients with RA and IBD. We found that Ab-IPL-IL-17 could effectively reduce clinical signs of arthritis and neutralise elevated IL-17 levels in IBD patient serum. CONCLUSIONS: Collectively, our preclinical and in vitro clinical evidence indicates high efficacy and therapeutic potency of Ab-IPL-IL-17, supporting the rationale for large-scale clinical evaluation of Ab-IPL-IL-17 in patients with IMIDs.


Asunto(s)
Artritis Reumatoide , Productos Biológicos , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Animales , Interleucina-17 , Agentes Inmunomoduladores , Citocinas , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico
4.
Comput Struct Biotechnol J ; 21: 3355-3368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37384351

RESUMEN

Today it is widely recognized that the PD-1/PD-L1 axis plays a fundamental role in escaping the immune system in cancers, so that anti-PD-1/PD-L1 antibodies have been evaluated for their antitumor properties in more than 1000 clinical trials. As a result, some of them have entered the market revolutionizing the treatment landscape of specific cancer types. Nonetheless, a new era based on the development of small molecules as anti PD-L1 drugs has begun. There are, however, some limitations to advancing these compounds into clinical stages including the possible difficulty in counteracting the PD-1/PD-L1 interaction in vivo, the discrepancy between the in vitro IC50 (HTFR assay) and cellular EC50 (immune checkpoint blockade co-culture assay), and the differences in ligands' affinity between human and murine PD-L1, which can affect their preclinical evaluation. Here, an extensive theoretical study, assisted by MicroScale Thermophoresis binding assays and NMR experiments, was performed to provide an atomistic picture of the binding event of three representative biphenyl-based compounds in both human and murine PD-L1. Structural determinants of the species' specificity were unraveled, providing unprecedented details useful for the design of next generation anti-PD-L1 molecules.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122901, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37244027

RESUMEN

Epigenetic modifications of DNA are known to play important regulatory roles in biological systems, especially in regulation of gene expression, and are associated with many types of human diseases, including cancer. Alternative DNA secondary structures, such as G-quadruplexes, can also influence gene transcription, thus suggesting that such structures may represent a distinctive layer of epigenetic information. G-quadruplex structures and DNA epigenetic modifications often go side by side, and recent evidence reveals that cytosine modifications within loops of G-quadruplexes can play a role in modulating their stability and structural polymorphism. Therefore, the development and validation of experimental techniques that can easily and reliably analyse G-quadruplex structures are highly desirable. In the present study, we propose to exploit the advantages of UV resonance Raman (UVRR) spectroscopy to investigate cytosine epigenetic modifications along with conformational changes in G-quadruplex-forming DNA. Our findings show that clear and specific spectral changes occur when there is a change in a G-quadruplex structure. Moreover, UVRR spectral analysis can indirectly distinguish the spectral variations occurring because of modifications in the guanine glycosidic conformations, as well as detect changes in the loops induced by H-bond formation or hydration of nitrogenous bases. The results further underscore the utility of UVRR spectroscopy for G-quadruplex structure elucidation under biologically relevant solution conditions.


Asunto(s)
G-Cuádruplex , Humanos , Espectrometría Raman , Citosina , ADN/genética , ADN/química , Epigénesis Genética
6.
J Med Chem ; 64(21): 16020-16045, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34670084

RESUMEN

The inhibition of the PD-1/PD-L1 axis by monoclonal antibodies has achieved remarkable success in treating a growing number of cancers. However, a novel class of small organic molecules, with BMS-202 (1) as the lead, is emerging as direct PD-L1 inhibitors. Herein, we report a series of 2,4,6-tri- and 2,4-disubstituted 1,3,5-triazines, which were synthesized and assayed for their PD-L1 binding by NMR and homogeneous time-resolved fluorescence. Among them, compound 10 demonstrated to strongly bind with the PD-L1 protein and challenged it in a co-culture of PD-L1 expressing cancer cells (PC9 and HCC827 cells) and peripheral blood mononuclear cells enhanced antitumor immune activity of the latter. Compound 10 significantly increased interferon γ release and apoptotic induction of cancer cells, with low cytotoxicity in healthy cells when compared to 1, thus paving the way for subsequent preclinical optimization and medical applications.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias/inmunología , Neoplasias/patología , Bibliotecas de Moléculas Pequeñas/farmacología , Triazinas/farmacología , Rastreo Diferencial de Calorimetría , Línea Celular Tumoral , Técnicas de Cocultivo , Humanos , Inhibidores de Puntos de Control Inmunológico/química , Modelos Moleculares , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Triazinas/química
7.
Eur J Pharmacol ; 897: 173936, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33581134

RESUMEN

Glioblastoma Multiforme (GBM) is a highly invasive primary brain tumour characterized by chemo- and radio-resistance and poor overall survival. GBM can present an aberrant functionality of p53, caused by the overexpression of the murine double minute 2 protein (MDM2) and its analogue MDM4, which may influence the response to conventional therapies. Moreover, tumour resistance/invasiveness has been recently attributed to an overexpression of the chemokine receptor CXCR4, identified as a pivotal mediator of glioma neovascularization. Notably, CXCR4 and MDM2-4 cooperate in promoting tumour invasion and progression. Although CXCR4 actively promotes MDM2 activation leading to p53 inactivation, MDM2-4 knockdown induces the downregulation of CXCR4 gene transcription. Our study aimed to assess if the CXCR4 signal blockade could enhance glioma cells' sensitivity to the inhibition of the p53-MDMs axis. Rationally designed inhibitors of MDM2/4 were combined with the CXCR4 antagonist, AMD3100, in human GBM cells and GBM stem-like cells (neurospheres), which are crucial for tumour recurrence and chemotherapy resistance. The dual MDM2/4 inhibitor RS3594 and the CXCR4 antagonist AMD3100 reduced GBM cell invasiveness and migration in single-agent treatment and mainly in combination. AMD3100 sensitized GBM cells to the antiproliferative activity of RS3594. It is noteworthy that these two compounds present synergic effects on cancer stem components: RS3594 inhibited the growth and formation of neurospheres, AMD3100 induced differentiation of neurospheres while enhancing RS3594 effectiveness preventing their proliferation/clonogenicity. These results confirm that blocking CXCR4/MDM2/4 represents a valuable strategy to reduce GBM proliferation and invasiveness, acting on the stem cell component too.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Bencilaminas/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Proteínas de Ciclo Celular/antagonistas & inhibidores , Ciclamas/farmacología , Glioblastoma/tratamiento farmacológico , Indoles/farmacología , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Receptores CXCR4/antagonistas & inhibidores , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Glioblastoma/enzimología , Glioblastoma/genética , Glioblastoma/patología , Humanos , Invasividad Neoplásica , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/enzimología , Células Madre Neoplásicas/patología , Neurogénesis/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Receptores CXCR4/metabolismo , Transducción de Señal , Esferoides Celulares , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
ACS Med Chem Lett ; 11(5): 1047-1053, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32435424

RESUMEN

Protein-protein interactions (PPIs) contribute to the onset and/or progression of several diseases, especially cancer, and this discovery has paved the way for considering disruption of the PPIs as an attractive anti-tumor strategy. In this regard, simple and efficient biophysical methods for detecting the interaction of the inhibitors with the protein counterpart are still in high demand. Herein, we describe a convenient NMR method for the screening of putative PPI inhibitors based on the use of "hot peptides" (HOPPI-NMR). As a case study, HOPPI-NMR was successful applied to the well-known p53/MDM2 system. Our outcomes highlight the main advantages of the method, including the use of a small amount of unlabeled proteins, the minimization of the risk of protein aggregation, and the ability to identify weak binders. The last leaves open the possibility for application of HOPPI-NMR in tandem with fragment-based drug discovery as a valid strategy for the identification of novel chemotypes acting as PPI inhibitors.

9.
Eur J Pharm Sci ; 149: 105337, 2020 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-32311457

RESUMEN

The oncogene KRAS is involved in the pathogenesis of many tumors such as pancreatic, lung and colorectal cancers, thereby representing a relevant target for the treatment of these diseases. The KRAS P1 promoter contains a nuclease hypersensitive, guanine-rich sequence able to fold into a G-quadruplex motif (G4). The stabilization of this G4 structure by small molecules is emerging as a feasible approach to downregulate KRAS expression. Here, a set of novel stabilizing molecules was identified through a virtual screening campaign on the NMR structure of the 22-mer KRAS G4. The most promising hits were then submitted to structure-activity relationships studies which allowed improving their binding affinity and selectivity over double helix DNA and different G4 topologies. The best derivative (19) underwent fluorescence titration experiments and further computational studies to disclose its binding mechanism to KRAS G4. Finally, biological assays showed that this compound is capable to reduce the viability of colorectal cancer cells in which mutated KRAS acts as a driver oncogene. Thus, 19 might represent the prototype of a new class of drugs for the treatment of tumors that, expressing mutated forms of KRAS, are refractory to current therapeutic regimens.

11.
ACS Med Chem Lett ; 10(4): 469-474, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30996781

RESUMEN

Several evidence pointed out the role of epigenetics in Alzheimer's disease (AD) revealing strictly relationships between epigenetic and "classical" AD targets. Based on the reported connection among histone deacetylases (HDACs) and glycogen synthase kinase 3ß (GSK-3ß), herein we present the discovery and the biochemical characterization of the first-in-class hit compound able to exert promising anti-AD effects by modulating the targeted proteins in the low micromolar range of concentration. Compound 11 induces an increase in histone acetylation and a reduction of tau phosphorylation. It is nontoxic and protective against H2O2 and 6-OHDA stimuli in SH-SY5Y and in CGN cell lines, respectively. Moreover, it promotes neurogenesis and displays immunomodulatory effects. Compound 11 shows no lethality in a wt-zebrafish model (<100 µM) and high water solubility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...