Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 587, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37996841

RESUMEN

BACKGROUND: Nitrogen-fixing nodules occur in ten related taxonomic lineages interspersed with lineages of non-nodulating plant species. Nodules result from an endosymbiosis between plants and diazotrophic bacteria; rhizobia in the case of legumes and Parasponia and Frankia in the case of actinorhizal species. Nodulating plants share a conserved set of symbiosis genes, whereas related non-nodulating sister species show pseudogenization of several key nodulation-specific genes. Signalling and cellular mechanisms critical for nodulation have been co-opted from the more ancient plant-fungal arbuscular endomycorrhizal symbiosis. Studies in legumes and actinorhizal plants uncovered a key component in symbiotic signalling, the LRR-type SYMBIOSIS RECEPTOR KINASE (SYMRK). SYMRK is essential for nodulation and arbuscular endomycorrhizal symbiosis. To our surprise, however, despite its arbuscular endomycorrhizal symbiosis capacities, we observed a seemingly critical mutation in a donor splice site in the SYMRK gene of Trema orientalis, the non-nodulating sister species of Parasponia. This led us to investigate the symbiotic functioning of SYMRK in the Trema-Parasponia lineage and to address the question of to what extent a single nucleotide polymorphism in a donor splice site affects the symbiotic functioning of SYMRK. RESULTS: We show that SYMRK is essential for nodulation and endomycorrhization in Parasponia andersonii. Subsequently, it is revealed that the 5'-intron donor splice site of SYMRK intron 12 is variable and, in most dicotyledon species, doesn't contain the canonical dinucleotide 'GT' signature but the much less common motif 'GC'. Strikingly, in T. orientalis, this motif is converted into a rare non-canonical 5'-intron donor splice site 'GA'. This SYMRK allele, however, is fully functional and spreads in the T. orientalis population of Malaysian Borneo. A further investigation into the occurrence of the non-canonical GA-AG splice sites confirmed that these are extremely rare. CONCLUSION: SYMRK functioning is highly conserved in legumes, actinorhizal plants, and Parasponia. The gene possesses a non-common 5'-intron GC donor splice site in intron 12, which is converted into a GA in T. orientalis accessions of Malaysian Borneo. The discovery of this functional GA-AG splice site in SYMRK highlights a gap in our understanding of splice donor sites.


Asunto(s)
Fabaceae , Rhizobium , Trema , Simbiosis/genética , Trema/metabolismo , Rhizobium/fisiología , Nodulación de la Raíz de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fosfotransferasas , Fabaceae/metabolismo , Plantas/metabolismo , Fijación del Nitrógeno/genética
2.
BMC Plant Biol ; 22(1): 225, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35490231

RESUMEN

BACKGROUND: Nodule symbiosis with diazotrophic Frankia or rhizobium occurs in plant species belonging to ten taxonomic lineages within the related orders Fabales, Fagales, Cucurbitales, and Rosales. Phylogenomic studies indicate that this nitrogen-fixing nodulation trait has a single evolutionary origin. In legume model plants, the molecular interaction between plant and rhizobium microsymbiont is mapped to a significant degree. A specific LysM-type receptor kinase, LjEPR3 in Lotus japonicus and MtLYK10 in Medicago truncatula, was found to act in a secondary identity-based mechanism, controlling intracellular rhizobium infection. Furthermore, LjEPR3 showed to bind surface exopolysaccharides of Mesorhizobium loti, the diazotrophic microsymbiont of L. japonicus. EPR3 orthologous genes are not unique to legumes. Surprisingly, however, its ortholog EXOPOLYSACCHARIDE RECEPTOR (EPR) is pseudogenized in Parasponia, the only lineage of non-legume plants that nodulate also with rhizobium. RESULTS: Analysis of genome sequences showed that EPR3 orthologous genes are highly conserved in nodulating plants. We identified a conserved retrotransposon insertion in the EPR promoter region in three Parasponia species, which associates with defected transcriptional regulation of this gene. Subsequently, we studied the EPR gene of two Trema species as they represent the sister genus of Parasponia for which it is assumed it lost the nitrogen-fixing nodulation trait. Both Trema species possess apparently functional EPR genes that have a nodulation-specific expression profile when introduced into a Parasponia background. This indicates the EPR gene functioned in nodulation in the Parasponia-Trema ancestor. CONCLUSION: We conclude that nodule-specific expression of EPR3 orthologous genes is shared between the legume and Parasponia-Trema lineage, suggesting an ancestral function in the nitrogen-fixing nodulation trait. Pseudogenization of EPR in Parasponia is an exceptional case in nodulating plants. We speculate that this may have been instrumental to the microsymbiont switch -from Frankia to rhizobium- that has occurred in the Parasponia lineage and the evolution of a novel crack entry infection mechanism.


Asunto(s)
Fabaceae , Rhizobium , Fabaceae/genética , Nitrógeno , Fijación del Nitrógeno/genética , Plantas , Rhizobium/fisiología , Simbiosis/genética
3.
Plant Physiol ; 184(2): 1004-1023, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32669419

RESUMEN

Rhizobium nitrogen-fixing nodule symbiosis occurs in two taxonomic lineages: legumes (Fabaceae) and the genus Parasponia (Cannabaceae). Both symbioses are initiated upon the perception of rhizobium-secreted lipochitooligosaccharides (LCOs), called Nod factors. Studies in the model legumes Lotus japonicus and Medicago truncatula showed that rhizobium LCOs are perceived by a heteromeric receptor complex of distinct Lys motif (LysM)-type transmembrane receptors named NOD FACTOR RECEPTOR1 (LjNFR1) and LjNFR5 (L. japonicus) and LYSM DOMAIN CONTAINING RECEPTOR KINASE3 (MtLYK3)-NOD FACTOR PERCEPTION (MtNFP; M. truncatula). Recent phylogenomic comparative analyses indicated that the nodulation traits of legumes, Parasponia spp., as well as so-called actinorhizal plants that establish a symbiosis with diazotrophic Frankia spp. bacteria share an evolutionary origin about 110 million years ago. However, the evolutionary trajectory of LysM-type LCO receptors remains elusive. By conducting phylogenetic analysis, transcomplementation studies, and CRISPR-Cas9 mutagenesis in Parasponia andersonii, we obtained insight into the origin of LCO receptors essential for nodulation. We identified four LysM-type receptors controlling nodulation in P. andersonii: PanLYK1, PanLYK3, PanNFP1, and PanNFP2 These genes evolved from ancient duplication events predating and coinciding with the origin of nodulation. Phylogenetic and functional analyses associated the occurrence of a functional NFP2-orthologous receptor to LCO-driven nodulation. Legumes and Parasponia spp. use orthologous LysM-type receptors to perceive rhizobium LCOs, suggesting a shared evolutionary origin of LCO-driven nodulation. Furthermore, we found that both PanLYK1 and PanLYK3 are essential for intracellular arbuscule formation of mutualistic endomycorrhizal fungi. PanLYK3 also acts as a chitin oligomer receptor essential for innate immune signaling, demonstrating functional analogy to CHITIN ELECITOR RECEPTOR KINASE-type receptors.


Asunto(s)
Cannabaceae/genética , Evolución Molecular , Fabaceae/genética , Lipopolisacáridos/genética , Lipopolisacáridos/metabolismo , Nodulación de la Raíz de la Planta/genética , Simbiosis/genética , Cannabaceae/fisiología , Fabaceae/fisiología , Genes de Plantas , Micorrizas/genética , Micorrizas/fisiología , Filogenia , Nodulación de la Raíz de la Planta/fisiología , Rhizobium/genética , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis/fisiología
4.
New Phytol ; 226(2): 541-554, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31863481

RESUMEN

●Nitrogen-fixing nodulation occurs in 10 taxonomic lineages, with either rhizobia or Frankia bacteria. To establish such an endosymbiosis, two processes are essential: nodule organogenesis and intracellular bacterial infection. In the legume-rhizobium endosymbiosis, both processes are guarded by the transcription factor NODULE INCEPTION (NIN) and its downstream target genes of the NUCLEAR FACTOR Y (NF-Y) complex. ●It is hypothesized that nodulation has a single evolutionary origin c. 110 Ma, followed by many independent losses. Despite a significant body of knowledge of the legume-rhizobium symbiosis, it remains elusive which signalling modules are shared between nodulating species in different taxonomic clades. We used Parasponia andersonii to investigate the role of NIN and NF-YA genes in rhizobium nodulation in a nonlegume system. ●Consistent with legumes, P. andersonii PanNIN and PanNF-YA1 are coexpressed in nodules. By analyzing single, double and higher-order CRISPR-Cas9 knockout mutants, we show that nodule organogenesis and early symbiotic expression of PanNF-YA1 are PanNIN-dependent and that PanNF-YA1 is specifically required for intracellular rhizobium infection. ●This demonstrates that NIN and NF-YA1 have conserved symbiotic functions. As Parasponia and legumes diverged soon after the birth of the nodulation trait, we argue that NIN and NF-YA1 represent core transcriptional regulators in this symbiosis.


Asunto(s)
Rhizobium , Simbiosis , Redes Reguladoras de Genes , Nitrógeno , Fijación del Nitrógeno/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética , Rhizobium/genética , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Plant Cell ; 31(1): 68-83, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30610167

RESUMEN

The legume-rhizobium symbiosis results in nitrogen-fixing root nodules, and their formation involves both intracellular infection initiated in the epidermis and nodule organogenesis initiated in inner root cell layers. NODULE INCEPTION (NIN) is a nodule-specific transcription factor essential for both processes. These NIN-regulated processes occur at different times and locations in the root, demonstrating a complex pattern of spatiotemporal regulation. We show that regulatory sequences sufficient for the epidermal infection process are located within a 5 kb region directly upstream of the NIN start codon in Medicago truncatula Furthermore, we identify a remote upstream cis-regulatory region required for the expression of NIN in the pericycle, and we show that this region is essential for nodule organogenesis. This region contains putative cytokinin response elements and is conserved in eight more legume species. Both the cytokinin receptor 1, which is essential for nodule primordium formation, and the B-type response regulator RR1 are expressed in the pericycle in the susceptible zone of the uninoculated root. This, together with the identification of the cytokinin-responsive elements in the NIN promoter, strongly suggests that NIN expression is initially triggered by cytokinin signaling in the pericycle to initiate nodule primordium formation.


Asunto(s)
Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Medicago truncatula/genética , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta/genética , Nodulación de la Raíz de la Planta/fisiología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Rhizobium/genética , Rhizobium/metabolismo , Nódulos de las Raíces de las Plantas/genética
6.
Proc Natl Acad Sci U S A ; 115(20): E4700-E4709, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29717040

RESUMEN

Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete Frankia as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive. We conducted genetic and comparative genomics studies by using Parasponia species (Cannabaceae), the only nonlegumes that can establish nitrogen-fixing nodules with rhizobium. Intergeneric crosses between Parasponia andersonii and its nonnodulating relative Trema tomentosa demonstrated that nodule organogenesis, but not intracellular infection, is a dominant genetic trait. Comparative transcriptomics of P. andersonii and the legume Medicago truncatula revealed utilization of at least 290 orthologous symbiosis genes in nodules. Among these are key genes that, in legumes, are essential for nodulation, including NODULE INCEPTION (NIN) and RHIZOBIUM-DIRECTED POLAR GROWTH (RPG). Comparative analysis of genomes from three Parasponia species and related nonnodulating plant species show evidence of parallel loss in nonnodulating species of putative orthologs of NIN, RPG, and NOD FACTOR PERCEPTION Parallel loss of these symbiosis genes indicates that these nonnodulating lineages lost the potential to nodulate. Taken together, our results challenge the view that nodulation evolved in parallel and raises the possibility that nodulation originated ∼100 Mya in a common ancestor of all nodulating plant species, but was subsequently lost in many descendant lineages. This will have profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plants.


Asunto(s)
Evolución Biológica , Fabaceae/genética , Genómica/métodos , Fijación del Nitrógeno , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta/genética , Rhizobium/fisiología , Simbiosis , Secuencia de Aminoácidos , Fabaceae/microbiología , Nitrógeno/metabolismo , Fenotipo , Filogenia , Nódulos de las Raíces de las Plantas , Homología de Secuencia
7.
Front Plant Sci ; 9: 284, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29559988

RESUMEN

Parasponia represents five fast-growing tropical tree species in the Cannabaceae and is the only plant lineage besides legumes that can establish nitrogen-fixing nodules with rhizobium. Comparative analyses between legumes and Parasponia allows identification of conserved genetic networks controlling this symbiosis. However, such studies are hampered due to the absence of powerful reverse genetic tools for Parasponia. Here, we present a fast and efficient protocol for Agrobacterium tumefaciens-mediated transformation and CRISPR/Cas9 mutagenesis of Parasponia andersonii. Using this protocol, knockout mutants are obtained within 3 months. Due to efficient micro-propagation, bi-allelic mutants can be studied in the T0 generation, allowing phenotypic evaluation within 6 months after transformation. We mutated four genes - PanHK4, PanEIN2, PanNSP1, and PanNSP2 - that control cytokinin, ethylene, or strigolactone hormonal networks and that in legumes commit essential symbiotic functions. Knockout mutants in Panhk4 and Panein2 displayed developmental phenotypes, namely reduced procambium activity in Panhk4 and disturbed sex differentiation in Panein2 mutants. The symbiotic phenotypes of Panhk4 and Panein2 mutant lines differ from those in legumes. In contrast, PanNSP1 and PanNSP2 are essential for nodule formation, a phenotype similar as reported for legumes. This indicates a conserved role for these GRAS-type transcriptional regulators in rhizobium symbiosis, illustrating the value of Parasponia trees as a research model for reverse genetic studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...