Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 113960, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38507407

RESUMEN

GFRAL-expressing neurons actuate aversion and nausea, are targets for obesity treatment, and may mediate metformin effects by long-term GDF15-GFRAL agonism. Whether GFRAL+ neurons acutely regulate glucose and energy homeostasis is, however, underexplored. Here, we report that cell-specific activation of GFRAL+ neurons using a variety of techniques causes a torpor-like state, including hypothermia, the release of stress hormones, a shift from glucose to lipid oxidation, and impaired insulin sensitivity, glucose tolerance, and skeletal muscle glucose uptake but augmented glucose uptake in visceral fat. Metabolomic analysis of blood and transcriptomics of muscle and fat indicate alterations in ketogenesis, insulin signaling, adipose tissue differentiation and mitogenesis, and energy fluxes. Our findings indicate that acute GFRAL+ neuron activation induces endocrine and gluco- and thermoregulatory responses associated with nausea and torpor. While chronic activation of GFRAL signaling promotes weight loss in obesity, these results show that acute activation of GFRAL+ neurons causes hypothermia and hyperglycemia.


Asunto(s)
Glucosa , Hipotermia , Náusea , Neuronas , Letargo , Animales , Neuronas/metabolismo , Náusea/metabolismo , Hipotermia/metabolismo , Letargo/fisiología , Glucosa/metabolismo , Ratones , Masculino , Músculo Esquelético/metabolismo , Ratones Endogámicos C57BL , Insulina/metabolismo , Resistencia a la Insulina , Transducción de Señal
2.
J Neuroendocrinol ; 35(12): e13352, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37885347

RESUMEN

We previously provided evidence supporting the existence of a novel leptin-independent body weight homeostat ("the gravitostat") that senses body weight and then initiates a homeostatic feed-back regulation of body weight. We, herein, hypothesize that this feed-back regulation involves a CNS mechanism. To identify populations of neurones of importance for the putative feed-back signal induced by increased loading, high-fat diet-fed rats or mice were implanted intraperitoneally or subcutaneously with capsules weighing ∼15% (Load) or ∼2.5% (Control) of body weight. At 3-5 days after implantation, neuronal activation was assessed in different parts of the brain/brainstem by immunohistochemical detection of FosB. Implantation of weighted capsules, both subcutaneous and intraperitoneal, induced FosB in specific neurones in the medial nucleus of the solitary tract (mNTS), known to integrate information about the metabolic status of the body. These neurones also expressed tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DbH), a pattern typical of norepinephrine neurones. In functional studies, we specifically ablated norepinephrine neurones in mNTS, which attenuated the feed-back regulation of increased load on body weight and food intake. In conclusion, increased load appears to reduce body weight and food intake via activation of norepinephrine neurones in the mNTS.


Asunto(s)
Norepinefrina , Núcleo Solitario , Ratas , Ratones , Animales , Norepinefrina/metabolismo , Neuronas/metabolismo , Tronco Encefálico/metabolismo , Peso Corporal/fisiología
3.
Mol Med ; 29(1): 138, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864157

RESUMEN

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD), the primary hepatic consequence of obesity, is affecting about 25% of the global adult population. The aim of this study was to examine the in vivo role of STE20-type protein kinase TAOK3, which has been previously reported to regulate hepatocellular lipotoxicity in vitro, in the development of NAFLD and systemic insulin resistance in the context of obesity. METHODS: Taok3 knockout mice and wild-type littermates were challenged with a high-fat diet. Various in vivo tests were performed to characterize the whole-body metabolism. NAFLD progression in the liver, and lipotoxic damage in adipose tissue, kidney, and skeletal muscle were compared between the genotypes by histological assessment, immunofluorescence microscopy, protein and gene expression profiling, and biochemical assays. Intracellular lipid accumulation and oxidative/ER stress were analyzed in cultured human and mouse hepatocytes where TAOK3 was knocked down by small interfering RNA. The expression of TAOK3-related STE20-type kinases was quantified in different organs from high-fat diet-fed Taok3-/- and wild-type mice. RESULTS: TAOK3 deficiency had no impact on body weight or composition, food consumption, locomotor activity, or systemic glucose or insulin homeostasis in obese mice. Consistently, Taok3-/- mice and wild-type littermates developed a similar degree of high-fat diet-induced liver steatosis, inflammation, and fibrosis, and we detected no difference in lipotoxic damage of adipose tissue, kidney, or skeletal muscle when comparing the two genotypes. In contrast, the silencing of TAOK3 in vitro markedly suppressed ectopic lipid accumulation and metabolic stress in mouse and human hepatocytes. Interestingly, the hepatic mRNA abundance of several TAOK3-related kinases, which have been previously implicated to increase the risk of NAFLD susceptibility, was significantly elevated in Taok3-/- vs. wild-type mice. CONCLUSIONS: In contrast to the in vitro observations, genetic deficiency of TAOK3 in mice failed to mitigate the detrimental metabolic consequences of chronic exposure to dietary lipids, which may be partly attributable to the activation of liver-specific compensation response for the genetic loss of TAOK3 by related STE20-type kinases.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Adulto , Animales , Humanos , Ratones , Dieta Alta en Grasa/efectos adversos , Lípidos , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/etiología , Obesidad/metabolismo
4.
Cell Rep ; 27(11): 3182-3198.e9, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31189104

RESUMEN

Variations in the human FTO gene have been linked to obesity and altered connectivity of the dopaminergic neurocircuitry. Here, we report that fat mass and obesity-associated protein (FTO) in dopamine D2 receptor-expressing medium spiny neurons (D2 MSNs) of mice regulate the excitability of these cells and control their striatopallidal globus pallidus external (GPe) projections. Lack of FTO in D2 MSNs translates into increased locomotor activity to novelty, associated with altered timing behavior, without impairing the ability to control actions or affecting reward-driven and conditioned behavior. Pharmacological manipulations of dopamine D1 receptor (D1R)- or D2R-dependent pathways in these animals reveal altered responses to D1- and D2-MSN-mediated control of motor output. These findings reveal a critical role for FTO to control D2 MSN excitability, their projections to the GPe, and behavioral responses to novelty.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Neuronas Dopaminérgicas/metabolismo , Conducta Exploratoria , Locomoción , Potenciales de Acción , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Animales , Neuronas Dopaminérgicas/fisiología , Femenino , Globo Pálido/citología , Globo Pálido/metabolismo , Globo Pálido/fisiología , Masculino , Ratones , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Recompensa
6.
J Cachexia Sarcopenia Muscle ; 8(3): 417-427, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28025863

RESUMEN

BACKGROUND: The cancer-anorexia-cachexia syndrome (CACS) negatively affects survival and therapy success in cancer patients. Inflammatory mediators and tumour-derived factors are thought to play an important role in the aetiology of CACS. However, the central and peripheral mechanisms contributing to CACS are insufficiently understood. The area postrema (AP) and the nucleus tractus solitarii are two important brainstem centres for the control of eating during acute sickness conditions. Recently, the tumour-derived macrophage inhibitory cytokine-1 (MIC-1) emerged as a possible mediator of cancer anorexia because lesions of these brainstem areas attenuated the anorectic effect of exogenous MIC-1 in mice. METHODS: Using a rat hepatoma tumour model, we examined the roles of the AP and of vagal afferents in the mediation of CACS. Specifically, we investigated whether a lesion of the AP (APX) or subdiaphragmatic vagal deafferentation (SDA) attenuate anorexia, body weight, muscle, and fat loss. Moreover, we analysed MIC-1 levels in this tumour model and their correlation with tumour size and the severity of the anorectic response. RESULTS: In tumour-bearing sham-operated animals mean daily food intake significantly decreased. The anorectic response was paralleled by a significant loss of body weight and muscle mass. APX rats were protected against anorexia, body weight loss, and muscle atrophy after tumour induction. In contrast, subdiaphragmatic vagal deafferentation did not attenuate cancer-induced anorexia or body weight loss. Tumour-bearing rats had substantially increased MIC-1 levels, which positively correlated with tumour size and cancer progression and negatively correlated with food intake. CONCLUSIONS: These findings demonstrate the importance of the AP in the mediation of cancer-dependent anorexia and body weight loss and support a pathological role of MIC-1 as a tumour-derived factor mediating CACS, possibly via an AP-dependent action.


Asunto(s)
Anorexia/etiología , Anorexia/metabolismo , Área Postrema/metabolismo , Caquexia/etiología , Caquexia/metabolismo , Factor 15 de Diferenciación de Crecimiento/metabolismo , Neoplasias Hepáticas/complicaciones , Nervio Vago/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Composición Corporal , Peso Corporal , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Metabolismo Energético , Xenoinjertos , Neoplasias Hepáticas/patología , Masculino , Actividad Motora , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Ratas
7.
Cell Rep ; 17(10): 2512-2521, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27926856

RESUMEN

Melanin-concentrating-hormone (MCH)-expressing neurons (MCH neurons) in the lateral hypothalamus (LH) are critical regulators of energy and glucose homeostasis. Here, we demonstrate that insulin increases the excitability of these neurons in control mice. In vivo, insulin promotes phosphatidylinositol 3-kinase (PI3K) signaling in MCH neurons, and cell-type-specific deletion of the insulin receptor (IR) abrogates this response. While lean mice lacking the IR in MCH neurons (IRΔMCH) exhibit no detectable metabolic phenotype under normal diet feeding, they present with improved locomotor activity and insulin sensitivity under high-fat-diet-fed, obese conditions. Similarly, obesity promotes PI3 kinase signaling in these neurons, and this response is abrogated in IRΔMCH mice. In turn, acute chemogenetic activation of MCH neurons impairs locomotor activity but not insulin sensitivity. Collectively, our experiments reveal an insulin-dependent activation of MCH neurons in obesity, which contributes via distinct mechanisms to the manifestation of impaired locomotor activity and insulin resistance.


Asunto(s)
Hormonas Hipotalámicas/genética , Resistencia a la Insulina/genética , Insulina/metabolismo , Melaninas/genética , Obesidad/metabolismo , Hormonas Hipofisarias/genética , Animales , Dieta Alta en Grasa , Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Humanos , Hipotálamo/metabolismo , Insulina/administración & dosificación , Locomoción/efectos de los fármacos , Ratones , Neuronas/efectos de los fármacos , Neuronas/patología , Obesidad/tratamiento farmacológico , Obesidad/patología , Fosfatidilinositol 3-Quinasas/genética
8.
Curr Biol ; 26(11): R470-3, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27269725

RESUMEN

Cutting-edge experiments show a new means to control the activity of specifically genetically targeted neurons in the hypothalamus using electromagnetic force. At the flip of a switch, the system bidirectionally regulates feeding behavior and glucose homeostasis, demonstrating wireless control over deep brain regions and their strong influence over energy balance.


Asunto(s)
Hipotálamo , Neuroendocrinología , Metabolismo Energético , Conducta Alimentaria , Glucosa , Homeostasis
9.
Cell ; 165(1): 125-138, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27015310

RESUMEN

Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Regulación del Apetito , Glucosa/metabolismo , Resistencia a la Insulina , Neuronas/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Conducta Alimentaria , Ratones , Miostatina/genética , Optogenética , Transcriptoma
10.
Nature ; 527(7576): 43-4, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26536954
11.
Nat Immunol ; 15(5): 423-30, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24681566

RESUMEN

Obesity and resistance to insulin are closely associated with the development of low-grade inflammation. Interleukin 6 (IL-6) is linked to obesity-associated inflammation; however, its role in this context remains controversial. Here we found that mice with an inactivated gene encoding the IL-6Rα chain of the receptor for IL-6 in myeloid cells (Il6ra(Δmyel) mice) developed exaggerated deterioration of glucose homeostasis during diet-induced obesity, due to enhanced resistance to insulin. Tissues targeted by insulin showed increased inflammation and a shift in macrophage polarization. IL-6 induced expression of the receptor for IL-4 and augmented the response to IL-4 in macrophages in a cell-autonomous manner. Il6ra(Δmyel) mice were resistant to IL-4-mediated alternative polarization of macrophages and exhibited enhanced susceptibility to lipopolysaccharide (LPS)-induced endotoxemia. Our results identify signaling via IL-6 as an important determinant of the alternative activation of macrophages and assign an unexpected homeostatic role to IL-6 in limiting inflammation.


Asunto(s)
Endotoxemia/inmunología , Resistencia a la Insulina , Interleucina-6/metabolismo , Activación de Macrófagos , Macrófagos/inmunología , Obesidad/inmunología , Animales , Células Cultivadas , Humanos , Resistencia a la Insulina/genética , Resistencia a la Insulina/inmunología , Interleucina-4/inmunología , Interleucina-6/genética , Lipopolisacáridos/inmunología , Activación de Macrófagos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Receptores de Interleucina-6/genética , Transducción de Señal/genética
12.
Brain Behav Immun ; 33: 123-30, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23827828

RESUMEN

Interleukin-6 (IL-6) is critical for the lipopolysaccharide (LPS)-induced febrile response. However, the exact source(s) of IL-6 involved in regulating the LPS-elicited fever is still to be identified. One known source of IL-6 is hematopoietic cells, such as monocytes. To clarify the contribution of hematopoietically derived IL-6 to fever, we created chimeric mice expressing IL-6 selectively either in cells of hematopoietic or, conversely, in cells of non-hematopoietic origin. This was performed by extinguishing hematopoietic cells in wild-type (WT) or IL-6 knockout (IL-6 KO) mice by whole-body irradiation and transplanting them with new stem cells. Mice on a WT background but lacking IL-6 in hematopoietic cells displayed normal fever to LPS and were found to have similar levels of IL-6 protein in the cerebrospinal fluid (CSF) and in plasma and of IL-6 mRNA in the brain as WT mice. In contrast, mice on an IL-6 KO background, but with intact IL-6 production in cells of hematopoietic origin, only showed a minor elevation of the body temperature after peripheral LPS injection. While they displayed significantly elevated levels of IL-6 both in plasma and CSF compared with control mice, the increase was modest compared with that seen in LPS injected mice on a WT background, the latter being approximately 20 times larger in magnitude. These results suggest that IL-6 of non-hematopoietic origin is the main source of IL-6 in LPS-induced fever, and that IL-6 produced by hematopoietic cells only plays a minor role.


Asunto(s)
Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Fiebre/inmunología , Hematopoyesis/inmunología , Interleucina-6/biosíntesis , Interleucina-6/fisiología , Lipopolisacáridos/farmacología , Animales , Células de la Médula Ósea/citología , Trasplante de Médula Ósea/métodos , Femenino , Fiebre/genética , Fiebre/patología , Rayos gamma , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/sangre , Proteínas Fluorescentes Verdes/genética , Hematopoyesis/genética , Interleucina-6/deficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Quimera por Radiación , Distribución Aleatoria
13.
FASEB J ; 27(5): 1973-80, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23395911

RESUMEN

Loss of appetite is a hallmark of inflammatory diseases. The underlying mechanisms remain undefined, but it is known that myeloid differentiation primary response gene 88 (MyD88), an adaptor protein critical for Toll-like and IL-1 receptor family signaling, is involved. Here we addressed the question of determining in which cells the MyD88 signaling that results in anorexia development occurs by using chimeric mice and animals with cell-specific deletions. We found that MyD88-knockout mice, which are resistant to bacterial lipopolysaccharide (LPS)-induced anorexia, displayed anorexia when transplanted with wild-type bone marrow cells. Furthermore, mice with a targeted deletion of MyD88 in hematopoietic or myeloid cells were largely protected against LPS-induced anorexia and displayed attenuated weight loss, whereas mice with MyD88 deletion in hepatocytes or in neural cells or the cerebrovascular endothelium developed anorexia and weight loss of similar magnitude as wild-type mice. Furthermore, in a model for cancer-induced anorexia-cachexia, deletion of MyD88 in hematopoietic cells attenuated the anorexia and protected against body weight loss. These findings demonstrate that MyD88-dependent signaling within the brain is not required for eliciting inflammation-induced anorexia. Instead, we identify MyD88 signaling in hematopoietic/myeloid cells as a critical component for acute inflammatory-driven anorexia, as well as for chronic anorexia and weight loss associated with malignant disease.


Asunto(s)
Anorexia/fisiopatología , Encéfalo/citología , Caquexia/fisiopatología , Células Endoteliales/fisiología , Inflamación/fisiopatología , Células Mieloides/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Sarcoma Experimental/fisiopatología , Animales , Quimera/fisiología , Metilcolantreno , Ratones , Ratones Noqueados , Neuronas/citología , Sarcoma Experimental/inducido químicamente , Transducción de Señal/fisiología , Pérdida de Peso/fisiología
14.
Brain Behav Immun ; 29: 124-135, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23305935

RESUMEN

It is well-established that prostaglandins (PGs) affect tumorigenesis, and evidence indicates that PGs also are important for the reduced food intake and body weight loss, the anorexia-cachexia syndrome, in malignant cancer. However, the identity of the PGs and the PG producing cyclooxygenase (COX) species responsible for cancer anorexia-cachexia is unknown. Here, we addressed this issue by transplanting mice with a tumor that elicits anorexia. Meal pattern analysis revealed that the anorexia in the tumor-bearing mice was due to decreased meal frequency. Treatment with a non-selective COX inhibitor attenuated the anorexia, and also tumor growth. When given at manifest anorexia, non-selective COX-inhibitors restored appetite and prevented body weight loss without affecting tumor size. Despite COX-2 induction in the cerebral blood vessels of tumor-bearing mice, a selective COX-2 inhibitor had no effect on the anorexia, whereas selective COX-1 inhibition delayed its onset. Tumor growth was associated with robust increase of PGE(2) levels in plasma - a response blocked both by non-selective COX-inhibition and by selective COX-1 inhibition, but not by COX-2 inhibition. However, there was no increase in PGE(2)-levels in the cerebrospinal fluid. Neutralization of plasma PGE(2) with specific antibodies did not ameliorate the anorexia, and genetic deletion of microsomal PGE synthase-1 (mPGES-1) affected neither anorexia nor tumor growth. Furthermore, tumor-bearing mice lacking EP(4) receptors selectively in the nervous system developed anorexia. These observations suggest that COX-enzymes, most likely COX-1, are involved in cancer-elicited anorexia and weight loss, but that these phenomena occur independently of host mPGES-1, PGE(2) and neuronal EP(4) signaling.


Asunto(s)
Anorexia/enzimología , Anorexia/etiología , Ciclooxigenasa 1/genética , Neoplasias Experimentales/enzimología , Neoplasias Experimentales/psicología , Animales , Anorexia/tratamiento farmacológico , Temperatura Corporal/fisiología , Ciclooxigenasa 1/biosíntesis , Ciclooxigenasa 2/fisiología , Inhibidores de la Ciclooxigenasa/farmacología , ADN Complementario/biosíntesis , ADN Complementario/genética , Dinoprostona/sangre , Dinoprostona/líquido cefalorraquídeo , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Femenino , Inmunohistoquímica , Oxidorreductasas Intramoleculares/biosíntesis , Masculino , Ratones , Neoplasias Experimentales/complicaciones , Prostaglandina-E Sintasas , ARN/biosíntesis , ARN/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Subtipo EP4 de Receptores de Prostaglandina E/efectos de los fármacos , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
15.
Endocrinology ; 153(10): 4849-61, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22872578

RESUMEN

Immune-induced prostaglandin E2 (PGE2) synthesis is critical for fever and other centrally elicited disease symptoms. The production of PGE2 depends on cyclooxygenase-2 and microsomal prostaglandin E synthase-1 (mPGES-1), but the identity of the cells involved has been a matter of controversy. We generated mice expressing mPGES-1 either in cells of hematopoietic or nonhematopoietic origin. Mice lacking mPGES-1 in hematopoietic cells displayed an intact febrile response to lipopolysaccharide, associated with elevated levels of PGE2 in the cerebrospinal fluid. In contrast, mice that expressed mPGES-1 only in hematopoietic cells, although displaying elevated PGE2 levels in plasma but not in the cerebrospinal fluid, showed no febrile response to lipopolysaccharide, thus pointing to the critical role of brain-derived PGE2 for fever. Immunohistochemical stainings showed that induced cyclooxygenase-2 expression in the brain exclusively occurred in endothelial cells, and quantitative PCR analysis on brain cells isolated by flow cytometry demonstrated that mPGES-1 is induced in endothelial cells and not in vascular wall macrophages. Similar analysis on liver cells showed induced expression in macrophages and not in endothelial cells, pointing at the distinct role for brain endothelial cells in PGE2 synthesis. These results identify the brain endothelial cells as the PGE2-producing cells critical for immune-induced fever.


Asunto(s)
Encéfalo/metabolismo , Dinoprostona/biosíntesis , Células Endoteliales/metabolismo , Fiebre/metabolismo , Lipopolisacáridos/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Fiebre/inducido químicamente , Fiebre/inmunología , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Prostaglandina-E Sintasas
16.
Brain Res ; 1328: 25-33, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20223226

RESUMEN

In experimental settings, antidepressant treatment as well as a stimulating environment has a positive influence on cognition and hippocampal plasticity. One putative mediator of this process is Neuronal Pentraxin 2 (NP2, Narp), known to mediate clustering of glutamatergic AMPA receptors at synapses, and demonstrated to play a role in activity-dependent synaptogenesis and synaptic plasticity. This study demonstrates that NP2 mRNA is robustly expressed in all hippocampal subregions and the medial habenula (MHb), both regions implicated in cognitive functions. Furthermore, NP2 mRNA expression is upregulated in the hippocampal subregions as well as in the MHb after long-term treatment with different antidepressant drugs regardless of monoaminergic profile, suggesting NP2 as a common mode of action of different antidepressant drugs. This effect occurs at the time frame where clinical response is normally achieved. In contrast, neither environmental enrichment nor deprivation has any influence on long-term NP2 mRNA expression. These findings support an involvement of NP2 in the pathway of antidepressant-induced plasticity, but not EE-induced plasticity; that NP2 might constitute a common link for the action of different types of antidepressant drugs and that the MHb could be a putative region for further studies of NP2.


Asunto(s)
Proteína C-Reactiva/genética , Habénula/efectos de los fármacos , Hipocampo/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , Animales , Esquema de Medicación , Ambiente Controlado , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Habénula/citología , Habénula/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Privación Sensorial/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Tiempo
17.
Brain Behav Immun ; 24(4): 554-7, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20093176

RESUMEN

The anorexia-cachexia syndrome, characterized by a rise in energy expenditure and loss of body weight that paradoxically are associated with loss of appetite and decreased food intake, contributes significantly to the morbidity and mortality in cancer. While the pathophysiology of cancer anorexia-cachexia is poorly understood, evidence indicates that pro-inflammatory cytokines are key mediators of this response. Although inflammation hence is recognized as an important component of cancer anorexia-cachexia, the molecular pathways involved are largely unknown. We addressed this issue in mice carrying a deletion of the gene encoding MyD88, the key intracellular adaptor molecule in Toll-like and interleukin-1 family receptor signaling. Wild-type and MyD88-deficient mice were transplanted subcutaneously with a syngenic methylcholanthrene-induced tumor (MCG 101) and daily food intake and body weight were recorded. Wild-type mice showed progressively reduced food intake from about 5days after tumor transplantation and displayed a slight body weight loss after 10days when the experiment was terminated. In contrast, MyD88-deficient mice did not develop anorexia, and displayed a positive body weight development during the observation period. While the MyD88-deficient mice on average developed somewhat smaller tumors than wild-type mice, this did not explain the absence of anorexia, because anorexia was seen in wild-type mice with similar tumor mass as non-anorexic knock-out mice. These data suggest that MyD88-dependent mechanisms are involved in the metabolic derangement during cancer anorexia-cachexia and that innate immune signaling is important for the development of this syndrome.


Asunto(s)
Anorexia/inmunología , Anorexia/fisiopatología , Peso Corporal/inmunología , Ingestión de Alimentos/inmunología , Factor 88 de Diferenciación Mieloide/genética , Neoplasias/fisiopatología , Eliminación de Secuencia , Animales , Apetito/inmunología , Caquexia/inmunología , Caquexia/fisiopatología , Modelos Animales de Enfermedad , Femenino , Metilcolantreno , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/deficiencia , Síndrome , Trasplante Isogénico , Pérdida de Peso/inmunología
18.
Neurosci Lett ; 470(1): 10-2, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-20034541

RESUMEN

Immune-induced activation of the hypothalamus-pituitary-adrenal axis is mediated by cyclooxygenase derived prostaglandins. Here we examined the role of cyclooxygenase-1 in this response, by using genetically modified mice as well as pharmacological inhibition. We found that mice with a deletion of the gene encoding cyclooxygenase-1, in contrast to wild type mice, did not show increased plasma corticosterone at 1h after immune challenge by peripheral injection of bacterial wall lipopolysaccharide, whereas the corticosterone levels were similarly elevated in both genotypes at 6h post-injection. Pretreatment of mice with the selective cyclooxygenase-1 inhibitor SC-560, given orally, likewise inhibited the rapid corticosterone response. These findings, taken together with our recent demonstration that the delayed stress hormone response to immune challenge is dependent on cyclooxygenase-2, show that the two cyclooxygenase isoforms play distinct, but temporally supplementary roles for the stress hormone response to inflammation.


Asunto(s)
Corticosterona/metabolismo , Ciclooxigenasa 1/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/inmunología , Administración Oral , Animales , Corticosterona/sangre , Ciclooxigenasa 1/genética , Inhibidores de la Ciclooxigenasa/administración & dosificación , Inhibidores de la Ciclooxigenasa/farmacología , Ratones , Ratones Noqueados , Pirazoles/administración & dosificación , Pirazoles/farmacología , Factores de Tiempo
19.
Cytotechnology ; 61(1-2): 73-9, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19885736

RESUMEN

The objective of this study was to determine whether the sensitivity to varying glucose conditions differs for the peripheral and central nervous system neurons at different developmental stages. Ventral horn neurons (VHN) and dorsal root ganglion neurons (DRG) from rats of different postnatal ages were exposed to glucose-free or glucose-rich culture conditions. Following 24 h at those conditions, the number of protein gene product 9.5 positive (PGP(+)) DRG neurons and choline acetyltransferase positive (ChAT(+)) VHN were counted and their neurite lengths and soma diameters were measured. For both DRG and VHN, the highest number of cells with and without neurite outgrowth was seen when cells from postnatal day 4 donors were cultured, while the lowest cell numbers were when neurons were from donors early after birth and grown under glucose-free conditions. The length of the neurites and the soma diameter for VHN were not affected by either glucose level or age. DRG neurons, however, exhibited the shortest neurites and smallest soma diameter when neurons were obtained and cultured early after birth. Our results indicate that survival of neurons in vitro is more influenced by the developmental stage than by glucose concentrations.

20.
J Neurosci ; 29(5): 1404-13, 2009 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-19193887

RESUMEN

Inflammation-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis has been suggested to depend on prostaglandins, but the prostaglandin species and the prostaglandin-synthesizing enzymes that are responsible have not been fully identified. Here, we examined HPA axis activation in mice after genetic deletion or pharmacological inhibition of prostaglandin E(2)-synthesizing enzymes, including cyclooxygenase-1 (Cox-1), Cox-2, and microsomal prostaglandin E synthase-1 (mPGES-1). After immune challenge by intraperitoneal injection of lipopolysaccharide, the rapid stress hormone responses were intact after Cox-2 inhibition and unaffected by mPGES-1 deletion, whereas unselective Cox inhibition blunted these responses, implying the involvement of Cox-1. However, mPGES-1-deficient mice showed attenuated transcriptional activation of corticotropin-releasing hormone (CRH) that was followed by attenuated plasma concentrations of adrenocorticotropic hormone and corticosterone. Cox-2 inhibition similarly blunted the delayed corticosterone response and further attenuated corticosterone release in mPGES-1 knock-out mice. The expression of the c-fos gene, an index of synaptic activation, was maintained in the paraventricular hypothalamic nucleus and its brainstem afferents both after unselective and Cox-2 selective inhibition as well as in Cox-1, Cox-2, and mPGES-1 knock-out mice. These findings point to a mechanism by which (1) neuronal afferent signaling via brainstem autonomic relay nuclei and downstream Cox-1-dependent prostaglandin release and (2) humoral, CRH transcription-dependent signaling through induced Cox-2 and mPGES-1 elicited PGE(2) synthesis, shown to occur in brain vascular cells, play distinct, but temporally supplementary roles for the stress hormone response to inflammation.


Asunto(s)
Dinoprostona/biosíntesis , Sistema Hipotálamo-Hipofisario/enzimología , Sistema Hipotálamo-Hipofisario/inmunología , Sistema Hipófiso-Suprarrenal/enzimología , Sistema Hipófiso-Suprarrenal/inmunología , Hormona Adrenocorticotrópica/antagonistas & inhibidores , Hormona Adrenocorticotrópica/metabolismo , Animales , Corticosterona/antagonistas & inhibidores , Corticosterona/metabolismo , Ciclooxigenasa 2/biosíntesis , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/administración & dosificación , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Oxidorreductasas Intramoleculares/biosíntesis , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Prostaglandina-E Sintasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA