Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neuropsychopharmacology ; 49(6): 915-923, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38374364

RESUMEN

Opioid use disorder is a chronic relapsing disorder encompassing misuse, dependence, and addiction to opioid drugs. Long term maintenance of associations between the reinforcing effects of the drug and the cues associated with its intake are a leading cause of relapse. Indeed, exposure to the salient drug-associated cues can lead to drug cravings and drug seeking behavior. The dorsal hippocampus (dHPC) and locus coeruleus (LC) have emerged as important structures for linking the subjective rewarding effects of opioids with environmental cues. However, their role in cue-induced reinstatement of opioid use remains to be further elucidated. In this study, we showed that chemogenetic inhibition of excitatory dHPC neurons during re-exposure to drug-associated cues significantly attenuates cue-induced reinstatement of morphine-seeking behavior. In addition, the same manipulation reduced reinstatement of sucrose-seeking behavior but failed to alter memory recall in the object location task. Finally, intact activity of tyrosine hydroxylase (TH) LC-dHPCTh afferents is necessary to drive cue induced reinstatement of morphine-seeking as inhibition of this pathway blunts cue-induced drug-seeking behavior. Altogether, these studies show an important role of the dHPC and LC-dHPCTh pathway in mediating cue-induced reinstatement of opioid seeking.


Asunto(s)
Señales (Psicología) , Comportamiento de Búsqueda de Drogas , Hipocampo , Locus Coeruleus , Autoadministración , Animales , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/metabolismo , Masculino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratas , Femenino , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/fisiología , Morfina/farmacología , Morfina/administración & dosificación , Ratas Sprague-Dawley , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Analgésicos Opioides/farmacología , Analgésicos Opioides/administración & dosificación , Trastornos Relacionados con Opioides/fisiopatología , Extinción Psicológica/efectos de los fármacos , Extinción Psicológica/fisiología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología
2.
J Physiol ; 601(19): 4309-4336, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37632733

RESUMEN

The hypothalamic paraventricular nucleus (PVN) is essential to peripheral chemoreflex neurocircuitry, but the specific efferent pathways utilized are not well defined. The PVN sends dense projections to the nucleus tractus solitarii (nTS), which exhibits neuronal activation following a hypoxic challenge. We hypothesized that nTS-projecting PVN (PVN-nTS) neurons contribute to hypoxia-induced nTS neuronal activation and cardiorespiratory responses. To selectively target PVN-nTS neurons, rats underwent bilateral nTS nanoinjection of retrogradely transported adeno-associated virus (AAV) driving Cre recombinase expression. We then nanoinjected into PVN AAVs driving Cre-dependent expression of Gq or Gi designer receptors exclusively activated by designer drugs (DREADDs) to test the degree that selective activation or inhibition, respectively, of the PVN-nTS pathway affects the hypoxic ventilatory response (HVR) of conscious rats. We used immunohistochemistry for Fos and extracellular recordings to examine how DREADD activation influences PVN-nTS neuronal activation by hypoxia. Pathway activation enhanced the HVR at moderate hypoxic intensities and increased PVN and nTS Fos immunoreactivity in normoxia and hypoxia. In contrast, PVN-nTS inhibition reduced both the HVR and PVN and nTS neuronal activation following hypoxia. To further confirm selective pathway effects on central cardiorespiratory output, rats underwent hypoxia before and after bilateral nTS nanoinjections of C21 to activate or inhibit PVN-nTS terminals. PVN terminal activation within the nTS enhanced tachycardic, sympathetic and phrenic (PhrNA) nerve activity responses to hypoxia whereas inhibition attenuated hypoxia-induced increases in nTS neuronal action potential discharge and PhrNA. The results demonstrate the PVN-nTS pathway enhances nTS neuronal activation and is necessary for full cardiorespiratory responses to hypoxia. KEY POINTS: The hypothalamic paraventricular nucleus (PVN) contributes to peripheral chemoreflex cardiorespiratory responses, but specific PVN efferent pathways are not known. The nucleus tractus solitarii (nTS) is the first integration site of the peripheral chemoreflex, and the nTS receives dense projections from the PVN. Selective GqDREADD activation of the PVN-nTS pathway was shown to enhance ventilatory responses to hypoxia and activation (Fos immunoreactivity (IR)) of nTS neurons in conscious rats, augmenting the sympathetic and phrenic nerve activity (SSNA and PhrNA) responses to hypoxia in anaesthetized rats. Selective GiDREADD inhibition of PVN-nTS neurons attenuates ventilatory responses, nTS neuronal Fos-IR, action potential discharge and PhrNA responses to hypoxia. These results demonstrate that a projection from the PVN to the nTS is critical for full chemoreflex responses to hypoxia.


Asunto(s)
Núcleo Hipotalámico Paraventricular , Núcleo Solitario , Ratas , Animales , Núcleo Solitario/fisiología , Ratas Sprague-Dawley , Neuronas/fisiología , Hipoxia
3.
Nat Neurosci ; 24(11): 1601-1613, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34663957

RESUMEN

The persistence of negative affect in pain leads to co-morbid symptoms such as anhedonia and depression-major health issues in the United States. The neuronal circuitry and contribution of specific cellular populations underlying these behavioral adaptations remains unknown. A common characteristic of negative affect is a decrease in motivation to initiate and complete goal-directed behavior, known as anhedonia. We report that in rodents, inflammatory pain decreased the activity of ventral tegmental area (VTA) dopamine (DA) neurons, which are critical mediators of motivational states. Pain increased rostromedial tegmental nucleus inhibitory tone onto VTA DA neurons, making them less excitable. Furthermore, the decreased activity of DA neurons was associated with reduced motivation for natural rewards, consistent with anhedonia-like behavior. Selective activation of VTA DA neurons was sufficient to restore baseline motivation and hedonic responses to natural rewards. These findings reveal pain-induced adaptations within VTA DA neurons that underlie anhedonia-like behavior.


Asunto(s)
Adaptación Fisiológica/fisiología , Anhedonia/fisiología , Neuronas Dopaminérgicas/metabolismo , Dolor/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Condicionamiento Operante/fisiología , Neuronas Dopaminérgicas/química , Femenino , Masculino , Optogenética/métodos , Dolor/genética , Ratas , Ratas Long-Evans , Ratas Transgénicas , Área Tegmental Ventral/química
4.
Am J Physiol Regul Integr Comp Physiol ; 317(6): R818-R833, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31509428

RESUMEN

Chemoreflex neurocircuitry includes the paraventricular nucleus (PVN), but the role of PVN efferent projections to specific cardiorespiratory nuclei is unclear. We hypothesized that the PVN contributes to cardiorespiratory responses to hypoxia via projections to the nucleus tractus solitarii (nTS). Rats received bilateral PVN microinjections of adeno-associated virus expressing inhibitory designer receptor exclusively activated by designer drug (GiDREADD) or green fluorescent protein (GFP) control. Efficacy of GiDREADD inhibition by the designer receptor exclusively activated by designer drug (DREADD) agonist Compound 21 (C21) was verified in PVN slices; C21 reduced evoked action potential discharge by reducing excitability to injected current in GiDREADD-expressing PVN neurons. We evaluated hypoxic ventilatory responses (plethysmography) and PVN and nTS neuronal activation (cFos immunoreactivity) to 2 h hypoxia (10% O2) in conscious GFP and GiDREADD rats after intraperitoneal C21 injection. Generalized PVN inhibition via systemic C21 blunted hypoxic ventilatory responses and reduced PVN and also nTS neuronal activation during hypoxia. To determine if the PVN-nTS pathway contributes to these effects, we evaluated cardiorespiratory responses to hypoxia during selective PVN terminal inhibition in the nTS. Anesthetized GFP and GiDREADD rats exposed to brief hypoxia (10% O2, 45 s) exhibited depressor and tachycardic responses and increased sympathetic and phrenic nerve activity. C21 was then microinjected into the nTS, followed after 60 min by another hypoxic episode. In GiDREADD but not GFP rats, PVN terminal inhibition by nTS C21 strongly attenuated the phrenic amplitude response to hypoxia. Interestingly, C21 augmented tachycardic and sympathetic responses without altering the coupling of splanchnic sympathetic nerve activity to phrenic nerve activity during hypoxia. Data demonstrate that the PVN, including projections to the nTS, is critical in shaping sympathetic and respiratory responses to hypoxia.


Asunto(s)
Hipoxia/metabolismo , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/citología , Núcleo Solitario/fisiología , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/metabolismo , Masculino , Neuronas/efectos de los fármacos , Oxígeno/farmacología , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Proteína Fluorescente Roja
5.
Am J Physiol Regul Integr Comp Physiol ; 315(6): R1167-R1182, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30230933

RESUMEN

The paraventricular nucleus of the hypothalamus (PVN) contributes to both autonomic and neuroendocrine function. PVN lesion or inhibition blunts cardiorespiratory responses to peripheral chemoreflex activation, suggesting that the PVN is required for full expression of these effects. However, the role of efferent projections to cardiorespiratory nuclei and the neurotransmitters/neuromodulators that are involved is unclear. The PVN sends dense projections to the nucleus tractus solitarii (nTS), a region that displays neuronal activation following hypoxia. We hypothesized that acute hypoxia activates nTS-projecting PVN neurons. Using a combination of retrograde tracing and immunohistochemistry, we determined whether hypoxia activates PVN neurons that project to the nTS and examined the phenotype of these neurons. Conscious rats underwent 2 h normoxia (21% O2, n = 5) or hypoxia (10% O2, n = 6). Hypoxia significantly increased Fos immunoreactivity in nTS-projecting neurons, primarily in the caudal PVN. The majority of activated nTS-projecting neurons contained corticotropin-releasing hormone (CRH). In the nTS, fibers expressing the CRH receptor corticotropin-releasing factor receptor 2 (CRFR2) were colocalized with oxytocin (OT) fibers and were closely associated with hypoxia-activated nTS neurons. A separate group of animals that received a microinjection of adeno-associated virus type 2-hSyn-green fluorescent protein (GFP) into the PVN exhibited GFP-expressing fibers in the nTS; a proportion of these fibers displayed OT immunoreactivity. Thus, nTS CRFR2s appear to be located on the fibers of PVN OT neurons that project to the nTS. Taken together, our findings suggest that PVN CRH projections to the nTS may modulate nTS neuronal activation, possibly via OTergic mechanisms, and thus contribute to chemoreflex cardiorespiratory responses.


Asunto(s)
Hipotálamo/metabolismo , Hipoxia/metabolismo , Oxitocina/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Animales , Hormona Liberadora de Corticotropina/metabolismo , Hipoxia/fisiopatología , Masculino , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/fisiopatología , Ratas Sprague-Dawley , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/metabolismo
6.
J Neurophysiol ; 115(3): 1691-702, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26719090

RESUMEN

The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple reflexes including cardiorespiratory reflexes. Glutamate is the primary excitatory neurotransmitter in the nTS and is removed from the extracellular milieu by excitatory amino acid transporters (EAATs). The goal of this study was to elucidate the role of EAATs in the nTS on basal synaptic and neuronal function and cardiorespiratory regulation. The majority of glutamate clearance in the central nervous system is believed to be mediated by astrocytic EAAT 1 and 2. We confirmed the presence of EAAT 1 and 2 within the nTS and their colocalization with astrocytic markers. EAAT blockade withdl-threo-ß-benzyloxyaspartic acid (TBOA) produced a concentration-related depolarization, increased spontaneous excitatory postsynaptic current (EPSC) frequency, and enhanced action potential discharge in nTS neurons. Solitary tract-evoked EPSCs were significantly reduced by EAAT blockade. Microinjection of TBOA into the nTS of anesthetized rats induced apneic, sympathoinhibitory, depressor, and bradycardic responses. These effects mimicked the response to microinjection of exogenous glutamate, and glutamate responses were enhanced by EAAT blockade. Together these data indicate that EAATs tonically restrain nTS excitability to modulate cardiorespiratory function.


Asunto(s)
Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Ácido Glutámico/metabolismo , Frecuencia Cardíaca , Respiración , Núcleo Solitario/fisiología , Sinapsis/fisiología , Potenciales de Acción , Animales , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores , Proteínas de Transporte de Glutamato en la Membrana Plasmática/antagonistas & inhibidores , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Núcleo Solitario/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
7.
Am J Physiol Regul Integr Comp Physiol ; 309(7): R721-31, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26157062

RESUMEN

Brainstem catecholamine neurons modulate sensory information and participate in control of cardiorespiratory function. These neurons have multiple projections, including to the paraventricular nucleus (PVN), which contributes to cardiorespiratory and neuroendocrine responses to hypoxia. We have shown that PVN-projecting catecholaminergic neurons are activated by hypoxia, but the function of these neurons is not known. To test the hypothesis that PVN-projecting catecholamine neurons participate in responses to respiratory challenges, we injected IgG saporin (control; n = 6) or anti-dopamine ß-hydroxylase saporin (DSAP; n = 6) into the PVN to retrogradely lesion catecholamine neurons projecting to the PVN. After 2 wk, respiratory measurements (plethysmography) were made in awake rats during normoxia, increasing intensities of hypoxia (12, 10, and 8% O2) and hypercapnia (5% CO2-95% O2). DSAP decreased the number of tyrosine hydroxylase-immunoreactive terminals in PVN and cells counted in ventrolateral medulla (VLM; -37%) and nucleus tractus solitarii (nTS; -36%). DSAP produced a small but significant decrease in respiratory rate at baseline (during normoxia) and at all intensities of hypoxia. Tidal volume and minute ventilation (VE) index also were impaired at higher hypoxic intensities (10-8% O2; e.g., VE at 8% O2: IgG = 181 ± 22, DSAP = 91 ± 4 arbitrary units). Depressed ventilation in DSAP rats was associated with significantly lower arterial O2 saturation at all hypoxic intensities. PVN DSAP also reduced ventilatory responses to 5% CO2 (VE: IgG = 176 ± 21 and DSAP = 84 ± 5 arbitrary units). Data indicate that catecholamine neurons projecting to the PVN are important for peripheral and central chemoreflex respiratory responses and for maintenance of arterial oxygen levels during hypoxic stimuli.


Asunto(s)
Catecolaminas/fisiología , Hemodinámica/fisiología , Hipoxia/fisiopatología , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Mecánica Respiratoria/fisiología , Animales , Presión Sanguínea/fisiología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Dopamina beta-Hidroxilasa/antagonistas & inhibidores , Frecuencia Cardíaca/fisiología , Hipercapnia/fisiopatología , Inmunohistoquímica , Masculino , Núcleo Hipotalámico Paraventricular/citología , Ratas , Ratas Sprague-Dawley , Reflejo/fisiología , Proteínas Inactivadoras de Ribosomas Tipo 1/farmacología , Saporinas , Telemetría
8.
Am J Physiol Regul Integr Comp Physiol ; 305(10): R1112-23, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24049118

RESUMEN

Hypoxia activates catecholamine neurons in the caudal ventrolateral medulla (CVLM). The hypothalamic paraventricular nucleus (PVN) modulates arterial chemoreflex responses and receives catecholaminergic projections from the CVLM, but it is not known whether the CVLM-PVN projection is activated by chemoreflex stimulation. We hypothesized that acute hypoxia (AH) activates PVN-projecting catecholaminergic neurons in the CVLM. Fluoro-Gold (2%, 60-90 nl) was microinjected into the PVN of rats to retrogradely label CVLM neurons. After recovery, conscious rats underwent 3 h of normoxia (21% O2, n = 4) or AH (12, 10, or 8% O2; n = 5 each group). We used Fos immunoreactivity as an index of CVLM neuronal activation and tyrosine hydroxylase (TH) immunoreactivity to identify catecholaminergic neurons. Positively labeled neurons were counted in six caudal-rostral sections containing CVLM. Hypoxia progressively increased the number of Fos-immunoreactive CVLM cells (21%, 19 ± 6; 12%, 49 ± 2; 10%, 117 ± 8; 8%, 179 ± 7; P < 0.001). Catecholaminergic cells colabeled with Fos immunoreactivity in the CVLM were observed following 12% O2, and further increases in hypoxia severity caused markedly more activation. PVN-projecting CVLM cells were activated following more severe hypoxia (10% and 8% O2). A large proportion (89 ± 3%) of all activated PVN-projecting CVLM neurons were catecholaminergic, regardless of hypoxia intensity. Data suggest that catecholaminergic, PVN-projecting CVLM neurons are particularly hypoxia-sensitive, and these neurons may be important in the cardiorespiratory and/or neuroendocrine responses elicited by the chemoreflex.


Asunto(s)
Catecolaminas/metabolismo , Hipoxia/metabolismo , Bulbo Raquídeo/citología , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Animales , Masculino , Bulbo Raquídeo/fisiología , Neuronas/citología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA