Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 12(5): e0178576, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28562630

RESUMEN

The biological function of α-Synuclein has been related to binding to lipids and membranes but these interactions can also mediate α-Synuclein aggregation, which is associated to Parkinson's disease and other neuropathologies. In brain tissue α-Synuclein is constitutively N-acetylated, a modification that plays an important role in its conformational propensity, lipid and membrane binding, and aggregation propensity. We studied the interactions of the lipid-mimetic SDS with N-acetylated and non-acetylated α-Synuclein, as well as their early-onset Parkinson's disease variants A30P, E46K and A53T. At low SDS/protein ratios α-Synuclein forms oligomeric complexes with SDS micelles with relatively low α-helical structure. These micellar oligomers can efficiently nucleate aggregation of monomeric α-Synuclein, with successive formation of oligomers, protofibrils, curly fibrils and mature amyloid fibrils. N-acetylation reduces considerably the rate of aggregation of WT α-Synuclein. However, in presence of any of the early-onset Parkinson's disease mutations the protective effect of N-acetylation against micelle-induced aggregation becomes impaired. At higher SDS/protein ratios, N-acetylation favors another conformational transition, in which a second type of α-helix-rich, non-aggregating oligomers become stabilized. Once again, the Parkinson's disease mutations disconnect the influence of N-acetylation in promoting this transition. These results suggest a cooperative link between the N-terminus and the region of the mutations that may be important for α-Synuclein function.


Asunto(s)
Micelas , alfa-Sinucleína/química , Acetilación , Humanos , Conformación Proteica
2.
Phys Chem Chem Phys ; 16(7): 2989-3000, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24394436

RESUMEN

Understanding the early molecular mechanisms governing amyloid aggregation is crucial to learn how to prevent it. Here, we used a site-directed mutagenesis approach to explore the molecular mechanism of nucleation of amyloid structure in the N47A Spc-SH3 domain. The changes in the native state stability produced by a series of mutations on each structural element of the domain were uncorrelated with the changes in the aggregation rates, although the overall aggregation mechanism was not altered. Analysis of the thioflavin T initial rates based on a simple kinetic model allowed us to extract thermodynamic magnitudes of the precursor states of nucleation and map the regions of the protein participating in the structure of the amyloidogenic precursors. This structure differs from that of the folding transition state of the SH3 domains, strongly suggesting that the regions of the conformational landscape leading to amyloid formation are divergent from those leading to the native fold.


Asunto(s)
Amiloide/química , Mutagénesis Sitio-Dirigida , Secuencia de Aminoácidos , Amiloide/genética , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Multimerización de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Termodinámica
3.
Phys Chem Chem Phys ; 15(37): 15508-17, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-23942905

RESUMEN

A deep understanding of the physicochemical factors modulating amyloid aggregation of proteins is crucial to develop therapeutic and preventive approaches for amyloid-related diseases. The earliest molecular events of the aggregation cascade represent some of the main targets as indicated by the toxic nature of certain early oligomers. Here, we study how different types of salt ions influence the kinetics of amyloid assembly of the N47A mutant α-spectrin SH3 domain using a battery of techniques. The salts influenced aggregation rates to different extents without altering the overall mechanism and the high apparent order of the experimental kinetics. A quantitative analysis of the initial aggregation rates measured by thioflavine-T fluorescence using a simple nucleation model allowed us to estimate the kinetic and thermodynamic magnitudes of crucial aggregation precursors, as well as to evaluate the impact of each type of ion on the earliest amyloid nucleation stages. Whilst cations did not have any noticeable effect under our experimental conditions, anions stabilized an amyloidogenic intermediate state and also increased the rate of the conformational conversion from dynamic oligomers to amyloid nuclei, resulting in a strong acceleration of the nucleation process. Anions appear to act by preferential binding to the amyloidogenic intermediate state, thus enhancing its population and subsequent oligomerization. Overall, our results contribute to the rationalization of the effect of ions on the amyloid nucleation stage and give insight into the properties of the crucial intermediate precursors of amyloid aggregation.


Asunto(s)
Amiloide/metabolismo , Sales (Química)/metabolismo , Espectrina/metabolismo , Amiloide/química , Amiloide/genética , Aniones/metabolismo , Humanos , Cinética , Mutación Puntual , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Estabilidad Proteica , Espectrina/química , Espectrina/genética , Termodinámica , Dominios Homologos src
4.
PLoS One ; 7(11): e49690, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209591

RESUMEN

Understanding the earliest molecular events during nucleation of the amyloid aggregation cascade is of fundamental significance to prevent amyloid related disorders. We report here an experimental kinetic analysis of the amyloid aggregation of the N47A mutant of the α-spectrin SH3 domain (N47A Spc-SH3) under mild acid conditions, where it is governed by rapid formation of amyloid nuclei. The initial rates of formation of amyloid structures, monitored by thioflavine T fluorescence at different protein concentrations, agree quantitatively with high-order kinetics, suggesting an oligomerization pre-equilibrium preceding the rate-limiting step of amyloid nucleation. The curves of native state depletion also follow high-order irreversible kinetics. The analysis is consistent with the existence of low-populated and heterogeneous oligomeric precursors of fibrillation that form by association of partially unfolded protein monomers. An increase in NaCl concentration accelerates fibrillation but reduces the apparent order of the nucleation kinetics; and a double mutant (K43A, N47A) Spc-SH3 domain, largely unfolded under native conditions and prone to oligomerize, fibrillates with apparent first order kinetics. On the light of these observations, we propose a simple kinetic model for the nucleation event, in which the monomer conformational unfolding and the oligomerization of an amyloidogenic intermediate are rapidly pre-equilibrated. A conformational change of the polypeptide chains within any of the oligomers, irrespective of their size, is the rate-limiting step leading to the amyloid nuclei. This model is able to explain quantitatively the initial rates of aggregation and the observed variations in the apparent order of the kinetics and, more importantly, provides crucial thermodynamic magnitudes of the processes preceding the nucleation. This kinetic approach is simple to use and may be of general applicability to characterize the amyloidogenic intermediates and oligomeric precursors of other disease-related proteins.


Asunto(s)
Amiloide/química , Dominios Homologos src , Amiloide/genética , Amiloide/metabolismo , Humanos , Cinética , Mutación , Unión Proteica , Pliegue de Proteína , Multimerización de Proteína , Estructura Secundaria de Proteína , Cloruro de Sodio/química , Termodinámica , Dominios Homologos src/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...