Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2014): 20232293, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38196351

RESUMEN

Deformed wing virus (DWV) is a resurgent insect pathogen of honeybees that is efficiently transmitted by vectors and through host social contact. Continual transmission of DWV between hosts and vectors is required to maintain the pathogen within the population, and this vector-host-pathogen system offers unique disease transmission dynamics for pathogen maintenance between vectors and a social host. In a series of experiments, we measured vector-vector, host-host and host-vector transmission routes and show how these maintain DWV in honeybee populations. We found co-infestations on shared hosts allowed for movement of DWV from mite to mite. Additionally, two social behaviours of the honeybee, trophallaxis and cannibalization of pupae, provide routes for horizontal transmission from bee to bee. Circulation of the virus solely among hosts through communicable modes provides a reservoir of DWV for naïve Varroa to acquire and subsequently vector the pathogen. Our findings illustrate the importance of community transmission between hosts and vector transmission. We use these results to highlight the key avenues used by DWV during maintenance and infection and point to similarities with a handful of other infectious diseases of zoonotic and medical importance.


Asunto(s)
Movimiento , Varroidae , Animales , Abejas , Pupa , Conducta Social
2.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37834280

RESUMEN

Potato virus Y, an important viral pathogen of potato, has several genetic variants and geographic distributions which could be affected by environmental factors, aphid vectors, and reservoir plants. PVY is transmitted to virus-free potato plants by aphids and passed on to the next vegetative generations through tubers, but the effects of tuber transmission in PVY is largely unknown. By using high-throughput sequencing, we investigated PVY populations transmitted to potato plants by aphids in different climate zones of Russia, namely the Moscow and Astrakhan regions. We analyzed sprouts from the tubers produced by field-infected plants to investigate the impact of tuber transmission on PVY genetics. We found a significantly higher diversity of PVY isolates in the Astrakhan region, where winters are shorter and milder and summers are warmer compared to the Moscow region. While five PVY types, NTNa, NTNb, N:O, N-Wi, and SYR-I, were present in both regions, SYRI-II, SYRI-III, and 261-4 were only found in the Astrakhan region. All these recombinants were composed of the genome sections derived from PVY types O and N, but no full-length sequences of such types were present. The composition of the PVY variants in the tuber sprouts was not always the same as in their parental plants, suggesting that tuber transmission impacts PVY genetics.


Asunto(s)
Áfidos , Potyvirus , Solanum tuberosum , Animales , Potyvirus/genética , Enfermedades de las Plantas , Solanum tuberosum/genética , Federación de Rusia , Genoma Viral , Áfidos/genética
3.
Viruses ; 15(7)2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37515283

RESUMEN

A metagenomic analysis of the virome of honey bees (Apis mellifera) from an apiary with high rates of unexplained colony losses identified a novel RNA virus. The virus, which was named Apis mellifera solinvivirus 1 (AmSV1), contains a 10.6 kb positive-strand genomic RNA with a single ORF coding for a polyprotein with the protease, helicase, and RNA-dependent RNA polymerase domains, as well as a single jelly-roll structural protein domain, showing highest similarity with viruses in the family Solinviviridae. The injection of honey bee pupae with AmSV1 preparation showed an increase in virus titer and the accumulation of the negative-strand of AmSV1 RNA 3 days after injection, indicating the replication of AmSV1. In the infected worker bees, AmSV1 was present in heads, thoraxes, and abdomens, indicating that this virus causes systemic infection. An analysis of the geographic and historic distribution of AmSV1, using over 900 apiary samples collected across the United States, showed AmSV1 presence since at least 2010. In the year 2021, AmSV1 was detected in 10.45% of apiaries (95%CI: 8.41-12.79%), mostly sampled in June and July in Northwestern and Northeastern United States. The diagnostic methods and information on the AmSV1 distribution will be used to investigate the connection of AmSV1 to honey bee colony losses.


Asunto(s)
Virus ARN , Abejas/genética , Animales , Estados Unidos , Virus ARN/genética , Metagenoma , ARN
4.
Commun Biol ; 6(1): 333, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973325

RESUMEN

The temperature dependence of infection reflects changes in performance of parasites and hosts. High temperatures often mitigate infection by favoring heat-tolerant hosts over heat-sensitive parasites. Honey bees exhibit endothermic thermoregulation-rare among insects-that can favor resistance to parasites. However, viruses are heavily host-dependent, suggesting that viral infection could be supported-not threatened-by optimum host function. To understand how temperature-driven changes in performance of viruses and hosts shape infection, we compared the temperature dependence of isolated viral enzyme activity, three honey bee traits, and infection of honey bee pupae. Viral enzyme activity varied <2-fold over a > 30 °C interval spanning temperatures typical of ectothermic insects and honey bees. In contrast, honey bee performance peaked at high (≥ 35 °C) temperatures and was highly temperature-sensitive. Although these results suggested that increasing temperature would favor hosts over viruses, the temperature dependence of pupal infection matched that of pupal development, falling only near pupae's upper thermal limits. Our results reflect the host-dependent nature of viruses, suggesting that infection is accelerated-not curtailed-by optimum host function, contradicting predictions based on relative performance of parasites and hosts, and suggesting tradeoffs between infection resistance and host survival that limit the viability of bee 'fever'.


Asunto(s)
Virus ARN , Virosis , Virus , Animales , Abejas , Temperatura , Pupa
5.
PLoS Pathog ; 19(1): e1011061, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656843

RESUMEN

Varroa destructor is a cosmopolitan pest and leading cause of colony loss of the European honey bee. Historically described as a competent vector of honey bee viruses, this arthropod vector is the cause of a global pandemic of Deformed wing virus, now endemic in honeybee populations in all Varroa-infested regions. Our work shows that viral spread is driven by Varroa actively switching from one adult bee to another as they feed. Assays using fluorescent microspheres were used to indicate the movement of fluids in both directions between host and vector when Varroa feed. Therefore, Varroa could be in either an infectious or naïve state dependent upon the disease status of their host. We tested this and confirmed that the relative risk of a Varroa feeding depended on their previous host's infectiousness. Varroa exhibit remarkable heterogeneity in their host-switching behavior, with some Varroa infrequently switching while others switch at least daily. As a result, relatively few of the most active Varroa parasitize the majority of bees. This multiple-feeding behavior has analogs in vectorial capacity models of other systems, where promiscuous feeding by individual vectors is a leading driver of vectorial capacity. We propose that the honeybee-Varroa relationship offers a unique opportunity to apply principles of vectorial capacity to a social organism, as virus transmission is both vectored and occurs through multiple host-to-host routes common to a crowded society.


Asunto(s)
Virus ARN , Varroidae , Abejas , Animales , Vectores Artrópodos
6.
Front Insect Sci ; 3: 1216291, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38469475

RESUMEN

Deformed wing virus (DWV) is a widespread pathogen of Apis mellifera honey bees, and is considered a major causative factor for the collapse of infected honey bee colonies. DWV can be horizontally transmitted among bees through various oral routes, including via food sharing and by interactions of bees with viral-contaminated solid hive substrates. Cold plasma ionized hydrogen peroxide (iHP) is used extensively by the food production, processing and medical industries to clean surfaces of microbial contaminants. In this study, we investigated the use of iHP to inactivate DWV particles in situ on a solid substrate. iHP-treated DWV sources were ~105-fold less infectious when injected into naïve honey bee pupae compared to DWV receiving no iHP treatment, matching injected controls containing no DWV. iHP treatment also greatly reduced the incidence of overt DWV infections (i.e., pupae having >109 copies of DWV). The level of DWV inactivation achieved with iHP treatment was higher than other means of viral inactivation such as gamma irradiation, and iHP treatment is likely simpler and safer. Treatment of DWV contaminated hive substrates with iHP, even with honey bees present, may be an effective way to decrease the impacts of DWV infection on honey bees.

7.
Virol J ; 19(1): 12, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033134

RESUMEN

In 1977, a sample of diseased adult honeybees (Apis mellifera) from Egypt was found to contain large amounts of a previously unknown virus, Egypt bee virus, which was subsequently shown to be serologically related to deformed wing virus (DWV). By sequencing the original isolate, we demonstrate that Egypt bee virus is in fact a fourth unique, major variant of DWV (DWV-D): more closely related to DWV-C than to either DWV-A or DWV-B. DWV-A and DWV-B are the most common DWV variants worldwide due to their close relationship and transmission by Varroa destructor. However, we could not find any trace of DWV-D in several hundred RNA sequencing libraries from a worldwide selection of honeybee, varroa and bumblebee samples. This means that DWV-D has either become extinct, been replaced by other DWV variants better adapted to varroa-mediated transmission, or persists only in a narrow geographic or host range, isolated from common bee and beekeeping trade routes.


Asunto(s)
Virus ARN , Varroidae , Animales , Abejas , Virus ADN , Egipto , Virus ARN/genética
8.
Mol Ecol Resour ; 22(3): 978-987, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34612590

RESUMEN

Pollinators are in decline thanks to the combined stresses of disease, pesticides, habitat loss, and climate. Honey bees face numerous pests and pathogens but arguably none are as devastating as Deformed wing virus (DWV). Understanding host-pathogen interactions and virulence of DWV in honey bees is slowed by the lack of cost-effective high-throughput screening methods for viral infection. Currently, analysis of virus infection in bees and their colonies is tedious, requiring a well-equipped molecular biology laboratory and the use of hazardous chemicals. Here we describe virus clones tagged with green fluorescent protein (GFP) or nanoluciferase (nLuc) that provide high-throughput detection and quantification of virus infections. GFP fluorescence is measured noninvasively in living bees via commonly available long-wave UV light sources and a smartphone camera, or a standard ultraviolet transilluminator gel imaging system. Nonlethal monitoring with GFP allows continuous screening of virus growth and serves as a direct breeding tool for identifying honey bee parents with increased antiviral resistance. Expression using the nLuc reporter strongly correlates with virus infection levels and is especially sensitive. Using multiple reporters, it is also possible to visualize competition, differential virulence, and host tissue targeting by co-occuring pathogens. Finally, it is possible to directly assess the risk of cross-species "spillover" from honey bees to other pollinators and vice versa.


Asunto(s)
Himenópteros , Virus ARN , Virosis , Virus , Animales , Abejas
9.
Yeast ; 39(1-2): 95-107, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34437725

RESUMEN

Honeybee symbionts, predominantly bacteria, play important roles in honeybee health, nutrition, and pathogen protection, thereby supporting colony health. On the other hand, fungi are often considered indicators of poor bee health, and honeybee microbiome studies generally exclude fungi and yeasts. We hypothesized that yeasts may be an important aspect of early honeybee biology, and if yeasts provide a mutual benefit to their hosts, then honeybees could provide a refuge during metamorphosis to ensure the presence of yeasts at emergence. We surveyed for yeast and fungi during pupal development and metamorphosis in worker bees using fungal-specific quantitative polymerase chain reaction (qPCR), next-generation sequencing, and standard microbiological culturing. On the basis of yeast presence in three distinct apiaries and multiple developmental stages, we conclude that yeasts can survive through metamorphosis and in naïve worker bees, albeit at relatively low levels. In comparison, known bacterial mutualists, like Gilliamella and Snodgrassella, were generally not found in pre-eclosed adult bees. Whether yeasts are actively retained as an important part of the bee microbiota or are passively propagating in the colony remains unknown. Our demonstration of the constancy of yeasts throughout development provides a framework to further understand the honeybee microbiota.


Asunto(s)
Microbiota , Saccharomyces cerevisiae , Animales , Bacterias/genética , Abejas , Intestinos , Saccharomyces cerevisiae/genética , Simbiosis
10.
Front Insect Sci ; 2: 931352, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38468796

RESUMEN

The ectoparasitic mite, Varroa destructor and the viruses it vectors, including types A and B of Deformed wing virus (DWV), pose a major threat to honey bees, Apis mellifera. Analysis of 256 mites collected from the same set of field colonies on five occasions from May to October 2021 showed that less than a half of them, 39.8% (95% confidence interval (CI): 34.0 - 46.0%), were able to induce a high (overt) level DWV infection with more than 109 viral genomes per bee in the pupa after 6 days of feeding, with both DWV-A and DWV-B being vectored at similar rates. To investigate the effect of the phoretic (or dispersal) stage on adult bees on the mites' ability to vector DWV, the mites from two collection events were divided into two groups, one of which was tested immediately for their infectiveness, and the other was kept with adult worker bees in cages for 12 days prior to testing their infectiveness. We found that while 39.2% (95% CI: 30.0 - 49.1%) of the immediately tested mites induced overt-level infections, 12-day passage on adult bees significantly increased the infectiousness to 89.8% (95% CI: 79.2 - 95.6%). It is likely that Varroa mites that survive brood interruptions in field colonies are increasingly infectious. The mite lifespan was affected by the DWV type it transmitted to pupae. The mites, which induced high DWV-B but not DWV-A infection had an average lifespan of 15.5 days (95% CI: 11.8 - 19.2 days), which was significantly shorter than those of the mites which induced high DWV-A but not DWV-B infection, with an average lifespan of 24.3 days (95% CI: 20.2 - 28.5), or the mites which did not induce high levels of DWV-A or DWV-B, with an average survival of 21.2 days (95% CI: 19.0 - 23.5 days). The mites which transmitted high levels of both DWV-A and DWV-B had an intermediate average survival of 20.5 days (95% CI: 15.1 - 25.9 days). The negative impact of DWV-B on mite survival could be a consequence of the ability of DWV-B, but not DWV-A to replicate in Varroa.

11.
Sci Rep ; 11(1): 8989, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33903723

RESUMEN

Transmission routes impact pathogen virulence and genetics, therefore comprehensive knowledge of these routes and their contribution to pathogen circulation is essential for understanding host-pathogen interactions and designing control strategies. Deformed wing virus (DWV), a principal viral pathogen of honey bees associated with increased honey bee mortality and colony losses, became highly virulent with the spread of its vector, the ectoparasitic mite Varroa destructor. Reproduction of Varroa mites occurs in capped brood cells and mite-infested pupae from these cells usually have high levels of DWV. The removal of mite-infested pupae by worker bees, Varroa Sensitive Hygiene (VSH), leads to cannibalization of pupae with high DWV loads, thereby offering an alternative route for virus transmission. We used genetically tagged DWV to investigate virus transmission to and between worker bees following pupal cannibalisation under experimental conditions. We demonstrated that cannibalization of DWV-infected pupae resulted in high levels of this virus in worker bees and that the acquired virus was then transmitted between bees via trophallaxis, allowing circulation of Varroa-vectored DWV variants without the mites. Despite the known benefits of hygienic behaviour, it is possible that higher levels of VSH activity may result in increased transmission of DWV via cannibalism and trophallaxis.


Asunto(s)
Abejas/virología , Canibalismo , Virus ARN/metabolismo , Varroidae/virología , Animales , Pupa/virología
12.
Viruses ; 14(1)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-35062206

RESUMEN

Insects are crucial for ecosystem functions and services and directly influence human well-being and health [...].


Asunto(s)
Evolución Molecular , Virus de Insectos/genética , Virus de Insectos/fisiología , Insectos/virología , Animales , Virus de Insectos/aislamiento & purificación
13.
PLoS One ; 15(11): e0242688, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33232341

RESUMEN

The ectoparasitic mite Varroa destructor is one of the most destructive pests of the honey bee (Apis mellifera) and the primary biotic cause of colony collapse in many regions of the world. These mites inflict physical injury on their honey bee hosts from feeding on host hemolymph and fat body cells/cellular components, and serve as the vector for deadly honey bee viruses, including Deformed wing virus (DWV) and the related Varroa destructor virus-1 (VDV-1) (i.e., DWV-like viruses). Studies focused on elucidating the dynamics of Varroa-mediated vectoring and transmission of DWV-like viruses may be confounded by viruses present in ingested host tissues or the mites themselves. Here we describe a system that includes an artificial diet free of insect tissue-derived components for maintaining Varroa mites for in vitro experimentation. Using this system, together with the novel engineered cDNA clone-derived genetically tagged VDV-1 and wild-type DWV, we demonstrated for the first time that Varroa mites provided an artificial diet supplemented with engineered viruses for 36 hours could acquire and transmit sufficient numbers of virus particles to establish an infection in virus-naïve hosts. While the in vitro system described herein provides for only up to five days of mite survival, precluding study of the long-term impacts of viruses on mite health, the system allows for extensive insights into the dynamics of Varroa-mediated vectoring and transmission of honey bee viruses.


Asunto(s)
Enfermedades de los Animales , Alimentación Animal/virología , Abejas , Virus ARN , Varroidae/virología , Virosis , Enfermedades de los Animales/genética , Enfermedades de los Animales/metabolismo , Enfermedades de los Animales/transmisión , Animales , Abejas/metabolismo , Abejas/parasitología , Abejas/virología , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/metabolismo , Virosis/genética , Virosis/metabolismo , Virosis/transmisión
14.
Sci Rep ; 10(1): 16847, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33033296

RESUMEN

Deformed wing virus (DWV) is a persistent pathogen of European honey bees and the major contributor to overwintering colony losses. The prevalence of DWV in honey bees has led to significant concerns about spillover of the virus to other pollinating species. Bumble bees are both a major group of wild and commercially-reared pollinators. Several studies have reported pathogen spillover of DWV from honey bees to bumble bees, but evidence of a sustained viral infection characterized by virus replication and accumulation has yet to be demonstrated. Here we investigate the infectivity and transmission of DWV in bumble bees using the buff-tailed bumble bee Bombus terrestris as a model. We apply a reverse genetics approach combined with controlled laboratory conditions to detect and monitor DWV infection. A novel reverse genetics system for three representative DWV variants, including the two master variants of DWV-type A and B-was used. Our results directly confirm DWV replication in bumble bees but also demonstrate striking resistance to infection by certain transmission routes. Bumble bees may support DWV replication but it is not clear how infection could occur under natural environmental conditions.


Asunto(s)
Abejas/virología , Interacciones Microbiota-Huesped/genética , Virus ARN/genética , Virus ARN/patogenicidad , Genética Inversa , Virosis/transmisión , Virosis/virología , Replicación Viral/genética , Animales , Variación Genética , Virus ARN/fisiología
15.
Viruses ; 12(4)2020 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-32231059

RESUMEN

We developed a honey bee RNA-virus vector based on the genome of a picorna-like Deformed wing virus (DWV), the main viral pathogen of the honey bee (Apis mellifera). To test the potential of DWV to be utilized as a vector, the 717 nt sequence coding for the enhanced green fluorescent protein (eGFP), flanked by the peptides targeted by viral protease, was inserted into an infectious cDNA clone of DWV in-frame between the leader protein and the virus structural protein VP2 genes. The in vitro RNA transcripts from egfp-tagged DWV cDNA clones were infectious when injected into honey bee pupae. Stable DWV particles containing genomic RNA of the recovered DWV with egfp inserts were produced, as evidenced by cesium chloride density gradient centrifugation. These particles were infectious to honey bee pupae when injected intra-abdominally. Fluorescent microscopy showed GFP expression in the infected cells and Western blot analysis demonstrated accumulation of free eGFP rather than its fusions with DWV leader protein (LP) and/or viral protein (VP) 2. Analysis of the progeny egfp-tagged DWV showed gradual accumulation of genome deletions for egfp, providing estimates for the rate of loss of a non-essential gene an insect RNA virus genome during natural infection.


Asunto(s)
Abejas/virología , Ingeniería Genética , Vectores Genéticos/genética , Genoma Viral , Virus ARN/genética , Animales , Clonación Molecular , Técnica del Anticuerpo Fluorescente , Orden Génico , Genes Reporteros , Inestabilidad Genómica , Transcripción Genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
16.
PLoS Biol ; 17(10): e3000502, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31600204

RESUMEN

The impacts of invertebrate RNA virus population dynamics on virulence and infection outcomes are poorly understood. Deformed wing virus (DWV), the main viral pathogen of honey bees, negatively impacts bee health, which can lead to colony death. Despite previous reports on the reduction of DWV diversity following the arrival of the parasitic mite Varroa destructor, the key DWV vector, we found high genetic diversity of DWV in infested United States honey bee colonies. Phylogenetic analysis showed that divergent US DWV genotypes are of monophyletic origin and were likely generated as a result of diversification after a genetic bottleneck. To investigate the population dynamics of this divergent DWV, we designed a series of novel infectious cDNA clones corresponding to coexisting DWV genotypes, thereby devising a reverse-genetics system for an invertebrate RNA virus quasispecies. Equal replication rates were observed for all clone-derived DWV variants in single infections. Surprisingly, individual clones replicated to the same high levels as their mixtures and even the parental highly diverse natural DWV population, suggesting that complementation between genotypes was not required to replicate to high levels. Mixed clone-derived infections showed a lack of strong competitive exclusion, suggesting that the DWV genotypes were adapted to coexist. Mutational and recombination events were observed across clone progeny, providing new insights into the forces that drive and constrain virus diversification. Accordingly, our results suggest that Varroa influences DWV dynamics by causing an initial selective sweep, which is followed by virus diversification fueled by negative frequency-dependent selection for new genotypes. We suggest that this selection might reflect the ability of rare lineages to evade host defenses, specifically antiviral RNA interference (RNAi). In support of this hypothesis, we show that RNAi induced against one DWV strain is less effective against an alternate strain from the same population.


Asunto(s)
Vectores Arácnidos/virología , Abejas/virología , Evasión Inmune/genética , Virus ARN/genética , Varroidae/virología , Animales , Abejas/genética , Abejas/inmunología , Abejas/parasitología , Células Clonales , Biblioteca de Genes , Variación Genética , Genotipo , Mutación , Filogenia , Interferencia de ARN/inmunología , Virus ARN/clasificación , Virus ARN/inmunología , Virus ARN/patogenicidad , Recombinación Genética , Genética Inversa/métodos , Selección Genética , Virulencia , Replicación Viral
17.
Sci Rep ; 9(1): 12445, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31455863

RESUMEN

Honey bees, the primary managed insect pollinator, suffer considerable losses due to Deformed wing virus (DWV), an RNA virus vectored by the mite Varroa destructor. Mite vectoring has resulted in the emergence of virulent DWV variants. The basis for such changes in DWV is poorly understood. Most importantly, it remains unclear whether replication of DWV occurs in the mite. In this study, we exposed Varroa mites to DWV type A via feeding on artificially infected honey bees. A significant, 357-fold increase in DWV load was observed in these mites after 2 days. However, after 8 additional days of passage on honey bee pupae with low viral loads, the DWV load dropped by 29-fold. This decrease significantly reduced the mites' ability to transmit DWV to honey bees. Notably, negative-strand DWV RNA, which could indicate viral replication, was detected only in mites collected from pupae with high DWV levels but not in the passaged mites. We also found that Varroa mites contain honey bee mRNAs, consistent with the acquisition of honey bee cells which would additionally contain DWV replication complexes with negative-strand DWV RNA. We propose that transmission of DWV type A by Varroa mites occurs in a non-propagative manner.


Asunto(s)
Vectores Artrópodos/virología , Abejas , Virus ARN/metabolismo , Varroidae/virología , Animales , Abejas/parasitología , Abejas/virología
18.
Sci Rep ; 7(1): 17447, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29234127

RESUMEN

RNA viruses impact honey bee health and contribute to elevated colony loss rates worldwide. Deformed wing virus (DWV) and the closely related Varroa destructor virus-1 (VDV1), are the most widespread honey bee viruses. VDV1 is known to cause high rates of overwintering colony losses in Europe, however it was unknown in the United States (US). Using next generation sequencing, we identified VDV1 in honey bee pupae in the US. We tested 603 apiaries the US in 2016 and found that VDV1 was present in 66.0% of them, making it the second most prevalent virus after DWV, which was present in 89.4% of the colonies. VDV1 had the highest load in infected bees (7.45*1012 ± 1.62*1012 average copy number ± standard error) compared to other tested viruses, with DWV second (1.04*1012 ± 0.53*1012). Analysis of 75 colonies sourced in 2010 revealed that VDV1 was present in only 2 colonies (2.7%), suggesting its recent spread. We also detected newly emerged recombinants between the US strains of VDV1 and DWV. The presence of these recombinants poses additional risk, because similar VDV1-DWV recombinants constitute the most virulent honeybee viruses in the UK.


Asunto(s)
Abejas/virología , Virus ARN/patogenicidad , Animales , Apicultura , Incidencia , Filogenia , Prevalencia , Virus ARN/genética , Virus ARN/fisiología , ARN Viral , Análisis de Secuencia de ARN , Estados Unidos
19.
J Invertebr Pathol ; 147: 37-50, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27793741

RESUMEN

Invertebrates are hosts to diverse RNA viruses that have all possible types of encapsidated genomes (positive, negative and ambisense single stranded RNA genomes, or a double stranded RNA genome). These viruses also differ markedly in virion morphology and genome structure. Invertebrate RNA viruses are present in three out of four currently recognized orders of RNA viruses: Mononegavirales, Nidovirales, and Picornavirales, and 10 out of 37 RNA virus families that have yet to be assigned to an order. This mini-review describes general properties of the taxonomic groups, which include invertebrate RNA viruses on the basis of their current classification by the International Committee on Taxonomy of Viruses (ICTV).


Asunto(s)
Invertebrados/virología , Mononegavirales/genética , Nidovirales/genética , Picornaviridae/genética , Animales , Interacciones Huésped-Patógeno , Mononegavirales/clasificación , Nidovirales/clasificación , Filogenia , Picornaviridae/clasificación
20.
PeerJ ; 4: e1591, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26819848

RESUMEN

Sacbrood virus (SBV) and Deformed wing virus (DWV) are evolutionarily related positive-strand RNA viruses, members of the Iflavirus group. They both infect the honeybee Apis mellifera but have strikingly different levels of virulence when transmitted orally. Honeybee larvae orally infected with SBV usually accumulate high levels of the virus, which halts larval development and causes insect death. In contrast, oral DWV infection at the larval stage usually causes asymptomatic infection with low levels of the virus, although high doses of ingested DWV could lead to DWV replicating to high levels. We investigated effects of DWV and SBV infection on the transcriptome of honeybee larvae and pupae using global RNA-Seq and real-time PCR analysis. This showed that high levels of SBV replication resulted in down-regulation of the genes involved in cuticle and muscle development, together with changes in expression of putative immune-related genes. In particular, honeybee larvae with high levels of SBV replication, with and without high levels of DWV replication, showed concerted up-regulated expression of antimicrobial peptides (AMPs), and down-regulated expression of the prophenoloxidase activating enzyme (PPAE) together with up-regulation of the expression of a putative serpin, which could lead to the suppression of the melanisation pathway. The effects of high SBV levels on expression of these immune genes were unlikely to be a consequence of SBV-induced developmental changes, because similar effects were observed in honeybee pupae infected by injection. In the orally infected larvae with high levels of DWV replication alone we observed no changes of AMPs or of gene expression in the melanisation pathway. In the injected pupae, high levels of DWV alone did not alter expression of the tested melanisation pathway genes, but resulted in up-regulation of the AMPs, which could be attributed to the effect of DWV on the regulation of AMP expression in response to wounding. We propose that the difference in expression of the honeybee immune genes induced by SBV and DWV may be an evolutionary adaptation to the different predominant transmission routes used by these viruses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...