Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Oncogene ; 34(35): 4591-600, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-25435365

RESUMEN

Relapse after clinical remission remains a leading cause of cancer-associated death. Although the mechanisms of tumor relapse are complex, the ability of cancer cells to survive physiological stress is a prerequisite for recurrence. Ewing sarcoma (ES) and neuroblastoma (NB) are aggressive cancers that frequently relapse after initial remission. In addition, both tumors overexpress the polycomb group (PcG) proteins BMI-1 and EZH2, which contribute to tumorigenicity. We have discovered that ES and NB resist hypoxic stress-induced death and that survival depends on PcG function. Epigenetic repression of developmental programs is the most well-established cancer-associated function of PcG proteins. However, we noted that voltage-gated potassium (Kv) channel genes are also targets of PcG regulation in stem cells. Given the role of potassium in regulating apoptosis, we reasoned that repression of Kv channel genes might have a role in cancer cell survival. Here we describe our novel finding that PcG-dependent repression of the Kv1.5 channel gene KCNA5 contributes to cancer cell survival under conditions of stress. We show that survival of cancer cells in stress is dependent upon suppression of Kv1.5 channel function. The KCNA5 promoter is marked in cancer cells with PcG-dependent chromatin repressive modifications that increase in hypoxia. Genetic and pharmacological inhibition of BMI-1 and EZH2, respectively, restore KCNA5 expression, which sensitizes cells to stress-induced death. In addition, ectopic expression of the Kv1.5 channel induces apoptotic cell death under conditions of hypoxia. These findings identify a novel role for PcG proteins in promoting cancer cell survival via repression of KCNA5.


Asunto(s)
Supervivencia Celular , Regulación Neoplásica de la Expresión Génica , Canal de Potasio Kv1.5/genética , Proteínas del Grupo Polycomb/fisiología , Apoptosis , Hipoxia de la Célula , Línea Celular Tumoral , Células Madre Embrionarias/fisiología , Silenciador del Gen , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Canal de Potasio Kv1.5/biosíntesis , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...