Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37503119

RESUMEN

The Encyclopedia of DNA elements (ENCODE) project is a collaborative effort to create a comprehensive catalog of functional elements in the human genome. The current database comprises more than 19000 functional genomics experiments across more than 1000 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the Homo sapiens and Mus musculus genomes. All experimental data, metadata, and associated computational analyses created by the ENCODE consortium are submitted to the Data Coordination Center (DCC) for validation, tracking, storage, and distribution to community resources and the scientific community. The ENCODE project has engineered and distributed uniform processing pipelines in order to promote data provenance and reproducibility as well as allow interoperability between genomic resources and other consortia. All data files, reference genome versions, software versions, and parameters used by the pipelines are captured and available via the ENCODE Portal. The pipeline code, developed using Docker and Workflow Description Language (WDL; https://openwdl.org/) is publicly available in GitHub, with images available on Dockerhub (https://hub.docker.com), enabling access to a diverse range of biomedical researchers. ENCODE pipelines maintained and used by the DCC can be installed to run on personal computers, local HPC clusters, or in cloud computing environments via Cromwell. Access to the pipelines and data via the cloud allows small labs the ability to use the data or software without access to institutional compute clusters. Standardization of the computational methodologies for analysis and quality control leads to comparable results from different ENCODE collections - a prerequisite for successful integrative analyses.

2.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066421

RESUMEN

The Encyclopedia of DNA elements (ENCODE) project is a collaborative effort to create a comprehensive catalog of functional elements in the human genome. The current database comprises more than 19000 functional genomics experiments across more than 1000 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the Homo sapiens and Mus musculus genomes. All experimental data, metadata, and associated computational analyses created by the ENCODE consortium are submitted to the Data Coordination Center (DCC) for validation, tracking, storage, and distribution to community resources and the scientific community. The ENCODE project has engineered and distributed uniform processing pipelines in order to promote data provenance and reproducibility as well as allow interoperability between genomic resources and other consortia. All data files, reference genome versions, software versions, and parameters used by the pipelines are captured and available via the ENCODE Portal. The pipeline code, developed using Docker and Workflow Description Language (WDL; https://openwdl.org/) is publicly available in GitHub, with images available on Dockerhub (https://hub.docker.com), enabling access to a diverse range of biomedical researchers. ENCODE pipelines maintained and used by the DCC can be installed to run on personal computers, local HPC clusters, or in cloud computing environments via Cromwell. Access to the pipelines and data via the cloud allows small labs the ability to use the data or software without access to institutional compute clusters. Standardization of the computational methodologies for analysis and quality control leads to comparable results from different ENCODE collections - a prerequisite for successful integrative analyses.

3.
Biophys J ; 121(6): 977-990, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35150617

RESUMEN

Methodological advances in conformation capture techniques have fundamentally changed our understanding of chromatin architecture. However, the nanoscale organization of chromatin and its cell-to-cell variance are less studied. Analyzing genome-wide data from 733 human cell and tissue samples, we identified 2 prototypical regions that exhibit high or absent hypersensitivity to deoxyribonuclease I, respectively. These regulatory active or inactive regions were examined in the lymphoblast cell line K562 by using high-throughput super-resolution microscopy. In both regions, we systematically measured the physical distance of 2 fluorescence in situ hybridization spots spaced by only 5 kb of DNA. Unexpectedly, the resulting distance distributions range from very compact to almost elongated configurations of more than 200-nm length for both the active and inactive regions. Monte Carlo simulations of a coarse-grained model of these chromatin regions based on published data of nucleosome occupancy in K562 cells were performed to understand the underlying mechanisms. There was no parameter set for the simulation model that can explain the microscopically measured distance distributions. Obviously, the chromatin state given by the strength of internucleosomal interaction, nucleosome occupancy, or amount of histone H1 differs from cell to cell, which results in the observed broad distance distributions. This large variability was not expected, especially in inactive regions. The results for the mechanisms for different distance distributions on this scale are important for understanding the contacts that mediate gene regulation. Microscopic measurements show that the inactive region investigated here is expected to be embedded in a more compact chromatin environment. The simulation results of this region require an increase in the strength of internucleosomal interactions. It may be speculated that the higher density of chromatin is caused by the increased internucleosomal interaction strength.


Asunto(s)
Cromatina , Nucleosomas , ADN/genética , Humanos , Hibridación Fluorescente in Situ/métodos , Conformación Molecular
4.
Nature ; 584(7820): 244-251, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32728217

RESUMEN

DNase I hypersensitive sites (DHSs) are generic markers of regulatory DNA1-5 and contain genetic variations associated with diseases and phenotypic traits6-8. We created high-resolution maps of DHSs from 733 human biosamples encompassing 438 cell and tissue types and states, and integrated these to delineate and numerically index approximately 3.6 million DHSs within the human genome sequence, providing a common coordinate system for regulatory DNA. Here we show that these maps highly resolve the cis-regulatory compartment of the human genome, which encodes unexpectedly diverse cell- and tissue-selective regulatory programs at very high density. These programs can be captured comprehensively by a simple vocabulary that enables the assignment to each DHS of a regulatory barcode that encapsulates its tissue manifestations, and global annotation of protein-coding and non-coding RNA genes in a manner orthogonal to gene expression. Finally, we show that sharply resolved DHSs markedly enhance the genetic association and heritability signals of diseases and traits. Rather than being confined to a small number of distal elements or promoters, we find that genetic signals converge on congruently regulated sets of DHSs that decorate entire gene bodies. Together, our results create a universal, extensible coordinate system and vocabulary for human regulatory DNA marked by DHSs, and provide a new global perspective on the architecture of human gene regulation.


Asunto(s)
Cromatina/genética , ADN/metabolismo , Desoxirribonucleasa I/metabolismo , Anotación de Secuencia Molecular , Cromatina/química , Cromatina/metabolismo , ADN/química , ADN/genética , Regulación de la Expresión Génica , Genes/genética , Genoma Humano/genética , Humanos , Regiones Promotoras Genéticas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética
5.
Nature ; 583(7818): 729-736, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32728250

RESUMEN

Combinatorial binding of transcription factors to regulatory DNA underpins gene regulation in all organisms. Genetic variation in regulatory regions has been connected with diseases and diverse phenotypic traits1, but it remains challenging to distinguish variants that affect regulatory function2. Genomic DNase I footprinting enables the quantitative, nucleotide-resolution delineation of sites of transcription factor occupancy within native chromatin3-6. However, only a small fraction of such sites have been precisely resolved on the human genome sequence6. Here, to enable comprehensive mapping of transcription factor footprints, we produced high-density DNase I cleavage maps from 243 human cell and tissue types and states and integrated these data to delineate about 4.5 million compact genomic elements that encode transcription factor occupancy at nucleotide resolution. We map the fine-scale structure within about 1.6 million DNase I-hypersensitive sites and show that the overwhelming majority are populated by well-spaced sites of single transcription factor-DNA interaction. Cell-context-dependent cis-regulation is chiefly executed by wholesale modulation of accessibility at regulatory DNA rather than by differential transcription factor occupancy within accessible elements. We also show that the enrichment of genetic variants associated with diseases or phenotypic traits in regulatory regions1,7 is almost entirely attributable to variants within footprints, and that functional variants that affect transcription factor occupancy are nearly evenly partitioned between loss- and gain-of-function alleles. Unexpectedly, we find increased density of human genetic variation within transcription factor footprints, revealing an unappreciated driver of cis-regulatory evolution. Our results provide a framework for both global and nucleotide-precision analyses of gene regulatory mechanisms and functional genetic variation.


Asunto(s)
Huella de ADN/normas , Genoma Humano/genética , Factores de Transcripción/metabolismo , Secuencia de Consenso , ADN/genética , ADN/metabolismo , Desoxirribonucleasa I/metabolismo , Genética de Población , Estudio de Asociación del Genoma Completo , Humanos , Modelos Moleculares , Polimorfismo de Nucleótido Simple , Secuencias Reguladoras de Ácidos Nucleicos/genética
6.
EBioMedicine ; 41: 427-442, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30827930

RESUMEN

BACKGROUND: Transcriptional dysregulation drives cancer formation but the underlying mechanisms are still poorly understood. Renal cell carcinoma (RCC) is the most common malignant kidney tumor which canonically activates the hypoxia-inducible transcription factor (HIF) pathway. Despite intensive study, novel therapeutic strategies to target RCC have been difficult to develop. Since the RCC epigenome is relatively understudied, we sought to elucidate key mechanisms underpinning the tumor phenotype and its clinical behavior. METHODS: We performed genome-wide chromatin accessibility (DNase-seq) and transcriptome profiling (RNA-seq) on paired tumor/normal samples from 3 patients undergoing nephrectomy for removal of RCC. We incorporated publicly available data on HIF binding (ChIP-seq) in a RCC cell line. We performed integrated analyses of these high-resolution, genome-scale datasets together with larger transcriptomic data available through The Cancer Genome Atlas (TCGA). FINDINGS: Though HIF transcription factors play a cardinal role in RCC oncogenesis, we found that numerous transcription factors with a RCC-selective expression pattern also demonstrated evidence of HIF binding near their gene body. Examination of chromatin accessibility profiles revealed that some of these transcription factors influenced the tumor's regulatory landscape, notably the stem cell transcription factor POU5F1 (OCT4). Elevated POU5F1 transcript levels were correlated with advanced tumor stage and poorer overall survival in RCC patients. Unexpectedly, we discovered a HIF-pathway-responsive promoter embedded within a endogenous retroviral long terminal repeat (LTR) element at the transcriptional start site of the PSOR1C3 long non-coding RNA gene upstream of POU5F1. RNA transcripts are induced from this promoter and read through PSOR1C3 into POU5F1 producing a novel POU5F1 transcript isoform. Rather than being unique to the POU5F1 locus, we found that HIF binds to several other transcriptionally active LTR elements genome-wide correlating with broad gene expression changes in RCC. INTERPRETATION: Integrated transcriptomic and epigenomic analysis of matched tumor and normal tissues from even a small number of primary patient samples revealed remarkably convergent shared regulatory landscapes. Several transcription factors appear to act downstream of HIF including the potent stem cell transcription factor POU5F1. Dysregulated expression of POU5F1 is part of a larger pattern of gene expression changes in RCC that may be induced by HIF-dependent reactivation of dormant promoters embedded within endogenous retroviral LTRs.


Asunto(s)
Retrovirus Endógenos/genética , Epigenómica , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sitios de Unión , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/mortalidad , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Reductasas del Citocromo/genética , Retrovirus Endógenos/fisiología , Regulación Neoplásica de la Expresión Génica , Humanos , Factor 1 Inducible por Hipoxia/genética , Neoplasias Renales/genética , Neoplasias Renales/mortalidad , Neoplasias Renales/patología , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Hidrolasas Diéster Fosfóricas/genética , Regiones Promotoras Genéticas , Proteínas/genética , Pirofosfatasas/genética , ARN Largo no Codificante , Tasa de Supervivencia , Secuencias Repetidas Terminales/genética , Enzimas Ubiquitina-Conjugadoras/genética
7.
Nature ; 518(7539): 360-364, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25693567

RESUMEN

Cancer is a disease potentiated by mutations in somatic cells. Cancer mutations are not distributed uniformly along the human genome. Instead, different human genomic regions vary by up to fivefold in the local density of cancer somatic mutations, posing a fundamental problem for statistical methods used in cancer genomics. Epigenomic organization has been proposed as a major determinant of the cancer mutational landscape. However, both somatic mutagenesis and epigenomic features are highly cell-type-specific. We investigated the distribution of mutations in multiple independent samples of diverse cancer types and compared them to cell-type-specific epigenomic features. Here we show that chromatin accessibility and modification, together with replication timing, explain up to 86% of the variance in mutation rates along cancer genomes. The best predictors of local somatic mutation density are epigenomic features derived from the most likely cell type of origin of the corresponding malignancy. Moreover, we find that cell-of-origin chromatin features are much stronger determinants of cancer mutation profiles than chromatin features of matched cancer cell lines. Furthermore, we show that the cell type of origin of a cancer can be accurately determined based on the distribution of mutations along its genome. Thus, the DNA sequence of a cancer genome encompasses a wealth of information about the identity and epigenomic features of its cell of origin.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Epigénesis Genética/genética , Mutación/genética , Neoplasias/genética , Neoplasias/patología , Línea Celular Tumoral , Cromatina/química , Momento de Replicación del ADN , Epigenómica , Genoma Humano/genética , Humanos , Melanocitos/metabolismo , Melanocitos/patología , Melanoma/genética , Melanoma/patología , Especificidad de Órganos/genética
8.
Nature ; 515(7527): 355-64, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25409824

RESUMEN

The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.


Asunto(s)
Genoma/genética , Genómica , Ratones/genética , Anotación de Secuencia Molecular , Animales , Linaje de la Célula/genética , Cromatina/genética , Cromatina/metabolismo , Secuencia Conservada/genética , Replicación del ADN/genética , Desoxirribonucleasa I/metabolismo , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Estudio de Asociación del Genoma Completo , Humanos , ARN/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Especificidad de la Especie , Factores de Transcripción/metabolismo , Transcriptoma/genética
9.
Science ; 346(6212): 1007-12, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25411453

RESUMEN

To study the evolutionary dynamics of regulatory DNA, we mapped >1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes.


Asunto(s)
Secuencia Conservada , ADN/genética , Evolución Molecular , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Desoxirribonucleasa I , Genoma Humano , Humanos , Ratones , Mapeo Restrictivo
10.
PLoS One ; 8(2): e54902, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23424621

RESUMEN

Hematopoietic protein-1 (Hem-1) is a hematopoietic cell specific member of the WAVE (Wiskott-Aldrich syndrome verprolin-homologous protein) complex, which regulates filamentous actin (F-actin) polymerization in many cell types including immune cells. However, the roles of Hem-1 and the WAVE complex in erythrocyte biology are not known. In this study, we utilized mice lacking Hem-1 expression due to a non-coding point mutation in the Hem1 gene to show that absence of Hem-1 results in microcytic, hypochromic anemia characterized by abnormally shaped erythrocytes with aberrant F-actin foci and decreased lifespan. We find that Hem-1 and members of the associated WAVE complex are normally expressed in wildtype erythrocyte progenitors and mature erythrocytes. Using mass spectrometry and global proteomics, Coomassie staining, and immunoblotting, we find that the absence of Hem-1 results in decreased representation of essential erythrocyte membrane skeletal proteins including α- and ß- spectrin, dematin, p55, adducin, ankyrin, tropomodulin 1, band 3, and band 4.1. Hem1⁻/⁻ erythrocytes exhibit increased protein kinase C-dependent phosphorylation of adducin at Ser724, which targets adducin family members for dissociation from spectrin and actin, and subsequent proteolysis. Increased adducin Ser724 phosphorylation in Hem1⁻/⁻ erythrocytes correlates with decreased protein expression of the regulatory subunit of protein phosphatase 2A (PP2A), which is required for PP2A-dependent dephosphorylation of PKC targets. These results reveal a novel, critical role for Hem-1 in the homeostasis of structural proteins required for formation and stability of the actin membrane skeleton in erythrocytes.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Membrana Eritrocítica/metabolismo , Actinas/química , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Eliminación de Gen , Ratones , Fosforilación , Células Madre/citología , Células Madre/metabolismo , Factores de Tiempo , Transcriptoma , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo
11.
Nature ; 489(7414): 75-82, 2012 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-22955617

RESUMEN

DNase I hypersensitive sites (DHSs) are markers of regulatory DNA and have underpinned the discovery of all classes of cis-regulatory elements including enhancers, promoters, insulators, silencers and locus control regions. Here we present the first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types. We identify ∼2.9 million DHSs that encompass virtually all known experimentally validated cis-regulatory sequences and expose a vast trove of novel elements, most with highly cell-selective regulation. Annotating these elements using ENCODE data reveals novel relationships between chromatin accessibility, transcription, DNA methylation and regulatory factor occupancy patterns. We connect ∼580,000 distal DHSs with their target promoters, revealing systematic pairing of different classes of distal DHSs and specific promoter types. Patterning of chromatin accessibility at many regulatory regions is organized with dozens to hundreds of co-activated elements, and the transcellular DNase I sensitivity pattern at a given region can predict cell-type-specific functional behaviours. The DHS landscape shows signatures of recent functional evolutionary constraint. However, the DHS compartment in pluripotent and immortalized cells exhibits higher mutation rates than that in highly differentiated cells, exposing an unexpected link between chromatin accessibility, proliferative potential and patterns of human variation.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , ADN/genética , Enciclopedias como Asunto , Genoma Humano/genética , Anotación de Secuencia Molecular , Secuencias Reguladoras de Ácidos Nucleicos/genética , Huella de ADN , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasa I/metabolismo , Evolución Molecular , Genómica , Humanos , Tasa de Mutación , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética
12.
Nature ; 489(7414): 83-90, 2012 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-22955618

RESUMEN

Regulatory factor binding to genomic DNA protects the underlying sequence from cleavage by DNase I, leaving nucleotide-resolution footprints. Using genomic DNase I footprinting across 41 diverse cell and tissue types, we detected 45 million transcription factor occupancy events within regulatory regions, representing differential binding to 8.4 million distinct short sequence elements. Here we show that this small genomic sequence compartment, roughly twice the size of the exome, encodes an expansive repertoire of conserved recognition sequences for DNA-binding proteins that nearly doubles the size of the human cis-regulatory lexicon. We find that genetic variants affecting allelic chromatin states are concentrated in footprints, and that these elements are preferentially sheltered from DNA methylation. High-resolution DNase I cleavage patterns mirror nucleotide-level evolutionary conservation and track the crystallographic topography of protein-DNA interfaces, indicating that transcription factor structure has been evolutionarily imprinted on the human genome sequence. We identify a stereotyped 50-base-pair footprint that precisely defines the site of transcript origination within thousands of human promoters. Finally, we describe a large collection of novel regulatory factor recognition motifs that are highly conserved in both sequence and function, and exhibit cell-selective occupancy patterns that closely parallel major regulators of development, differentiation and pluripotency.


Asunto(s)
Huella de ADN , ADN/genética , Enciclopedias como Asunto , Genoma Humano/genética , Anotación de Secuencia Molecular , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasa I/metabolismo , Impresión Genómica , Genómica , Humanos , Polimorfismo de Nucleótido Simple/genética , Sitio de Iniciación de la Transcripción
13.
Science ; 337(6099): 1190-5, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22955828

RESUMEN

Genome-wide association studies have identified many noncoding variants associated with common diseases and traits. We show that these variants are concentrated in regulatory DNA marked by deoxyribonuclease I (DNase I) hypersensitive sites (DHSs). Eighty-eight percent of such DHSs are active during fetal development and are enriched in variants associated with gestational exposure-related phenotypes. We identified distant gene targets for hundreds of variant-containing DHSs that may explain phenotype associations. Disease-associated variants systematically perturb transcription factor recognition sequences, frequently alter allelic chromatin states, and form regulatory networks. We also demonstrated tissue-selective enrichment of more weakly disease-associated variants within DHSs and the de novo identification of pathogenic cell types for Crohn's disease, multiple sclerosis, and an electrocardiogram trait, without prior knowledge of physiological mechanisms. Our results suggest pervasive involvement of regulatory DNA variation in common human disease and provide pathogenic insights into diverse disorders.


Asunto(s)
ADN/genética , Enfermedad/genética , Variación Genética , Polimorfismo de Nucleótido Simple , Elementos Reguladores de la Transcripción , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Alelos , Cromatina/metabolismo , Cromatina/ultraestructura , Enfermedad de Crohn/genética , Desoxirribonucleasa I/metabolismo , Electrocardiografía , Desarrollo Fetal , Feto/metabolismo , Redes Reguladoras de Genes , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Esclerosis Múltiple/genética , Fenotipo , Regiones Promotoras Genéticas , Factores de Transcripción/química , Factores de Transcripción/genética
14.
Bioinformatics ; 28(14): 1919-20, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22576172

RESUMEN

UNLABELLED: The large and growing number of genome-wide datasets highlights the need for high-performance feature analysis and data comparison methods, in addition to efficient data storage and retrieval techniques. We introduce BEDOPS, a software suite for common genomic analysis tasks which offers improved flexibility, scalability and execution time characteristics over previously published packages. The suite includes a utility to compress large inputs into a lossless format that can provide greater space savings and faster data extractions than alternatives. AVAILABILITY: http://code.google.com/p/bedops/ includes binaries, source and documentation.


Asunto(s)
Compresión de Datos/métodos , Genómica/métodos , Programas Informáticos
15.
Br J Haematol ; 154(4): 492-501, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21689084

RESUMEN

Spherocytosis is one of the most common inherited disorders, yet presents with a wide range of clinical severity. While several genes have been found mutated in patients with spherocytosis, the molecular basis for the variability in severity of haemolytic anaemia is not entirely understood. To identify candidate proteins involved in haemolytic anaemia pathophysiology, we utilized a label-free comparative proteomic approach to detect differences in red blood cells (RBCs) from normal and ß-adducin (Add2) knock-out mice. We detected seven proteins that were decreased and 48 proteins that were increased in ß-adducin null RBC ghosts. Since haemolytic anaemias are characterized by reticulocytosis, we compared reticulocyte-enriched samples from phenylhydrazine-treated mice with mature RBCs from untreated mice. Among the 48 proteins increased in Add2 knockout RBCs, only 11 were also increased in reticulocytes. Of the proteins decreased in Add2 knockout RBCs, α-adducin showed the greatest intensity difference, followed by SLC9A1, the sodium-hydrogen exchanger previously termed NHE1. We verified these mass spectrometry results by immunoblot. This is the first example of SLC9A1deficiency in haemolytic anaemia and suggests new insights into the mechanisms leading to fragile RBCs.


Asunto(s)
Proteínas de Transporte de Catión/deficiencia , Eritrocitos/metabolismo , Proteínas de Microfilamentos/deficiencia , Animales , Proteínas Sanguíneas/metabolismo , Proteínas de Transporte de Catión/sangre , Proteínas del Citoesqueleto , Membrana Eritrocítica/metabolismo , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/sangre , Proteómica/métodos , Reticulocitos/metabolismo , Intercambiador 1 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/sangre
16.
Blood Cells Mol Dis ; 47(2): 85-94, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21592827

RESUMEN

Hemolytic anemia is one of the most common inherited disorders. To identify candidate proteins involved in hemolytic anemia pathophysiology, we utilized a label-free comparative proteomic approach to detect differences in RBCs from normal and beta-adducin (Add2) knock-out mice. We detected 7 proteins that were decreased and 48 proteins that were increased in the beta-adducin knock-out RBC ghost. Since hemolytic anemias are characterized by reticulocytosis, we compared reticulocyte-enriched samples from phenylhydrazine-treated mice with mature RBCs from untreated mice. Label-free analysis identified 47 proteins that were increased in the reticulocyte-enriched samples and 21 proteins that were decreased. Among the proteins increased in Add2 knockout RBCs, only 11 were also found increased in reticulocytes. Among the proteins decreased in Add2 knockout RBCs, beta- and alpha-adducin showed the greatest intensity difference, followed by NHE-1 (Slc9a1), the sodium-hydrogen exchanger. We verified these mass spectrometry results by immunoblot. This is the first example of a deficiency of NHE-1 in hemolytic anemia and suggests new insights into the mechanisms leading to fragile RBCs. Our use of label-free comparative proteomics to make this discovery demonstrates the usefulness of this approach as opposed to metabolic or chemical isotopic labeling of mice.


Asunto(s)
Anemia Hemolítica/genética , Proteínas de Unión a Calmodulina , Proteínas de Transporte de Catión/genética , Eritrocitos/metabolismo , Fragilidad Osmótica/genética , Fenilhidrazinas/efectos adversos , Isoformas de Proteínas/genética , Proteómica/métodos , Reticulocitos/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Secuencia de Aminoácidos , Anemia Hemolítica/inducido químicamente , Anemia Hemolítica/metabolismo , Anemia Hemolítica/patología , Animales , Western Blotting , Proteínas de Unión a Calmodulina/deficiencia , Proteínas de Unión a Calmodulina/genética , Proteínas de Transporte de Catión/deficiencia , Modelos Animales de Enfermedad , Recuento de Eritrocitos , Membrana Eritrocítica/genética , Membrana Eritrocítica/metabolismo , Eritrocitos/citología , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Fenilhidrazinas/farmacología , Isoformas de Proteínas/metabolismo , Recuento de Reticulocitos , Reticulocitos/citología , Intercambiador 1 de Sodio-Hidrógeno , Espectrometría de Masas en Tándem
17.
Proc Natl Acad Sci U S A ; 104(38): 15162-7, 2007 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-17848511

RESUMEN

Ecosystem restoration may require returning threatened populations of ecologically pivotal species to near their former abundances, but it is often difficult to estimate historic population size of species that have been heavily exploited. Eastern Pacific gray whales play a key ecological role in their Arctic feeding grounds and are widely thought to have returned to their prewhaling abundance. Recent mortality spikes might signal that the population has reached long-term carrying capacity, but an alternative is that this decline was due to shifting climatic conditions on Arctic feeding grounds. We used a genetic approach to estimate prewhaling abundance of gray whales and report DNA variability at 10 loci that is typical of a population of approximately 76,000-118,000 individuals, approximately three to five times more numerous than today's average census size of 22,000. Coalescent simulations indicate these estimates may include the entire Pacific metapopulation, suggesting that our average measurement of approximately 96,000 individuals was probably distributed between the eastern and currently endangered western Pacific populations. These levels of genetic variation suggest the eastern population is at most at 28-56% of its historical abundance and should be considered depleted. If used to inform management, this would halve acceptable human-caused mortality for this population from 417 to 208 per year. Potentially profound ecosystem impacts may have resulted from a decline from 96,000 gray whales to the current population. At previous levels, gray whales may have seasonally resuspended 700 million cubic meters of sediment, as much as 12 Yukon Rivers, and provided food to a million sea birds.


Asunto(s)
Ecosistema , Variación Genética , Genética de Población , Ballenas/genética , Animales , Simulación por Computador , Datos de Secuencia Molecular , Mutación , Océano Pacífico , Dinámica Poblacional , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...