Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Regen Biomater ; 11: rbae055, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38867890

RESUMEN

Clinical bone-morphogenetic protein 2 (BMP2) treatment for bone regeneration, often resulting in complications like soft tissue inflammation and ectopic ossification due to high dosages and non-specific delivery systems, necessitates research into improved biomaterials for better BMP2 stability and retention. To tackle this challenge, we introduced a groundbreaking bone-targeted, lipoplex-loaded, three-dimensional bioprinted bilayer scaffold, termed the polycaprolactone-bioink-nanoparticle (PBN) scaffold, aimed at boosting bone regeneration. We encapsulated BMP2 within the fibroin nanoparticle based lipoplex (Fibroplex) and functionalized it with DSS6 for bone tissue-specific targeting. 3D printing technology enables customized, porous PCL scaffolds for bone healing and soft tissue growth, with a two-step bioprinting process creating a cellular lattice structure and a bioink grid using gelatin-alginate hydrogel and DSS6-Fibroplex, shown to support effective nutrient exchange and cell growth at specific pore sizes. The PBN scaffold is predicted through in silico analysis to exhibit biased BMP2 release between bone and soft tissue, a finding validated by in vitro osteogenic differentiation assays. The PBN scaffold was evaluated for critical calvarial defects, focusing on sustained BMP2 delivery, prevention of soft tissue cell infiltration and controlled fiber membrane pore size in vivo. The PBN scaffold demonstrated a more than eight times longer BMP2 release time than that of the collagen sponge, promoting osteogenic differentiation and bone regeneration in a calvarial defect animal. Our findings suggest that the PBN scaffold enhanced the local concentration of BMP2 in bone defects through sustained release and improved the spatial arrangement of bone formation, thereby reducing the risk of heterotopic ossification.

2.
Crit Rev Eukaryot Gene Expr ; 34(6): 37-60, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912962

RESUMEN

Regenerative dental medicine continuously expands to improve treatments for prevalent clinical problems in dental and oral medicine. Stem cell based translational opportunities include regenerative therapies for tooth restoration, root canal therapy, and inflammatory processes (e.g., periodontitis). The potential of regenerative approaches relies on the biological properties of dental stem cells. These and other multipotent somatic mesenchymal stem cell (MSC) types can in principle be applied as either autologous or allogeneic sources in dental procedures. Dental stem cells have distinct developmental origins and biological markers that determine their translational utility. Dental regenerative medicine is supported by mechanistic knowledge of the molecular pathways that regulate dental stem cell growth and differentiation. Cell fate determination and lineage progression of dental stem cells is regulated by multiple cell signaling pathways (e.g., WNTs, BMPs) and epigenetic mechanisms, including DNA modifications, histone modifications, and non-coding RNAs (e.g., miRNAs and lncRNAs). This review also considers a broad range of novel approaches in which stem cells are applied in combination with biopolymers, ceramics, and composite materials, as well as small molecules (agonistic or anti-agonistic ligands) and natural compounds. Materials that mimic the microenvironment of the stem cell niche are also presented. Promising concepts in bone and dental tissue engineering continue to drive innovation in dental and non-dental restorative procedures.


Asunto(s)
Materiales Biocompatibles , Medicina Regenerativa , Humanos , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Células Madre/citología , Células Madre/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Animales
3.
J Periodontal Res ; 59(1): 151-161, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37882070

RESUMEN

BACKGROUND AND OBJECTIVE: Haploinsufficiency of Runx2 (Runx2+/- ) causes dental anomalies. However, little is known about the involvement of Runx2 in the maintenance of dentin, cementum, and the periodontal ligament (PDL) during adulthood. This study aimed to observe the effects of Runx2+/- on homeostasis of the periodontal complex. MATERIALS AND METHODS: A total of 14 three-month-old Runx2+/- mice and their wild-type littermates were examined using micro-computed tomography, histology, and immunohistochemistry. Phenotypic alterations in the dentin, cementum, and PDL were characterized and quantified. RESULTS: Haploinsufficiency of Runx2 caused cellular changes in the PDL space including reduction of cell proliferation and apoptosis, and irregular attachment of the collagen fibers in the PDL space into the cementum. Absence of continuous thickness of cementum was also observed in Runx2+/- mice. CONCLUSION: Runx2 is critical for cementum integrity and attachment of periodontal fibers. Because of its importance to cementum homeostasis, Runx2 is essential for homeostasis of periodontal complex.


Asunto(s)
Cemento Dental , Ligamento Periodontal , Ratones , Animales , Microtomografía por Rayos X , Inmunohistoquímica , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética
4.
Sci Rep ; 13(1): 20859, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012291

RESUMEN

The assay for transposase-accessible chromatin with sequencing (ATAC-seq) is the most widely used method for measuring chromatin accessibility. Researchers have included multi-sample replication in ATAC-seq experimental designs. In epigenomic analysis, researchers should measure subtle changes in the peak by considering the read depth of individual samples. It is important to determine whether the peaks of each replication have an integrative meaning for the region of interest observed during multi-sample integration. We developed multi-epigenome sample integration approach for precise peak calling (MESIA), which integrates replication with high representativeness and reproducibility in multi-sample replication and determines the optimal peak. After identifying the reproducibility between all replications, our method integrated multiple samples determined as representative replicates. MESIA detected 6.06 times more peaks, and the value of the peaks was 1.32 times higher than the previously used method. MESIA is a shell-script-based open-source code that provides researchers involved in the epigenome with comprehensive insights.


Asunto(s)
Epigenoma , Secuenciación de Nucleótidos de Alto Rendimiento , Reproducibilidad de los Resultados , Cromatina/genética , Secuenciación de Inmunoprecipitación de Cromatina , Análisis de Secuencia de ADN/métodos
5.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37833912

RESUMEN

In the nucleus, distinct, discrete spots or regions called "foci" have been identified, each harboring a specific molecular function. Accurate and efficient quantification of these foci is essential for understanding cellular dynamics and signaling pathways. In this study, we present an innovative automated image analysis method designed to precisely quantify subcellular foci within the cell nucleus. Manual foci counting methods can be tedious and time-consuming. To address these challenges, we developed an open-source software that automatically counts the number of foci from the indicated image files. We compared the foci counting efficiency, velocity, accuracy, and convenience of Foci-Xpress with those of other conventional methods in foci-induced models. We can adjust the brightness of foci to establish a threshold. The Foci-Xpress method was significantly faster than other conventional methods. Its accuracy was similar to that of conventional methods. The most significant strength of Foci-Xpress is automation, which eliminates the need for analyzing equipment while counting. This enhanced throughput facilitates comprehensive statistical analyses and supports robust conclusions from experiments. Furthermore, automation completely rules out biases caused by researchers, such as manual errors or daily variations. Thus, Foci-Xpress is a convincing, convenient, and easily accessible focus-counting tool for cell biologists.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Programas Informáticos , Procesamiento de Imagen Asistido por Computador/métodos , Automatización
6.
Cell Death Dis ; 14(8): 576, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37648716

RESUMEN

Peptidylarginine deiminase (PADI) 2 catalyzes the post-translational conversion of peptidyl-arginine to peptidyl-citrulline in a process called citrullination. However, the precise functions of PADI2 in bone formation and homeostasis remain unknown. In this study, our objective was to elucidate the function and regulatory mechanisms of PADI2 in bone formation employing global and osteoblast-specific Padi2 knockout mice. Our findings demonstrate that Padi2 deficiency leads to the loss of bone mass and results in a cleidocranial dysplasia (CCD) phenotype with delayed calvarial ossification and clavicular hypoplasia, due to impaired osteoblast differentiation. Mechanistically, Padi2 depletion significantly reduces RUNX2 levels, as PADI2-dependent stabilization of RUNX2 protected it from ubiquitin-proteasomal degradation. Furthermore, we discovered that PADI2 binds to RUNX2 and citrullinates it, and identified ten PADI2-induced citrullination sites on RUNX2 through high-resolution LC-MS/MS analysis. Among these ten citrullination sites, the R381 mutation in mouse RUNX2 isoform 1 considerably reduces RUNX2 levels, underscoring the critical role of citrullination at this residue in maintaining RUNX2 protein stability. In conclusion, these results indicate that PADI2 plays a distinct role in bone formation and osteoblast differentiation by safeguarding RUNX2 against proteasomal degradation. In addition, we demonstrate that the loss-of-function of PADI2 is associated with CCD, thereby providing a new target for the treatment of bone diseases.


Asunto(s)
Citrulinación , Displasia Cleidocraneal , Animales , Ratones , Osteogénesis , Cromatografía Liquida , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Espectrometría de Masas en Tándem , Ratones Noqueados
7.
Exp Mol Med ; 55(7): 1531-1543, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37464093

RESUMEN

Although the normal physiological level of oxidative stress is beneficial for maintaining bone homeostasis, imbalance between reactive oxygen species (ROS) production and antioxidant defense can cause various bone diseases. The purpose of this study was to determine whether nicotinamide (NAM), an NAD+ precursor, can support the maintenance of bone homeostasis by regulating osteoblasts. Here, we found that NAM enhances osteoblast differentiation and mitochondrial metabolism. NAM increases the expression of antioxidant enzymes, which is due to increased FOXO3A transcriptional activity via SIRT3 activation. NAM has not only a preventive effect against weak and chronic oxidative stress but also a therapeutic effect against strong and acute exposure to H2O2 in osteoblast differentiation. Collectively, the results indicate that NAM increases mitochondrial biogenesis and antioxidant enzyme expression through activation of the SIRT3-FOXO3A axis, which consequently enhances osteoblast differentiation. These results suggest that NAM could be a potential preventive or therapeutic agent for bone diseases caused by ROS.


Asunto(s)
Enfermedades Óseas , Sirtuina 3 , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Niacinamida/farmacología , Sirtuina 3/genética , Sirtuina 3/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Osteoblastos/metabolismo
8.
Biomater Res ; 26(1): 59, 2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36274171

RESUMEN

In an aging society, quality of life improvement is emerging as an important issue, and as implants are accepted as the core of oral rehabilitation treatment, competition for leadership in developing related technologies is intensifying. In this trend, unlike what is evident in the literature, the patent landscape shows the status of industrial-based technology development. A database analysis of a total of 32,237 dental implant patents shows improvements in technology, diverse geographical characteristics, and new advances toward technological convergence in this field. Technologically, dental implant technology has shown a tendency to develop from conventional implant materials and surface treatment technologies to new material technologies making use of substances such as pure zirconium and tantalum or software technologies related to diagnosis and prognosis. Regionally, dental implant technology, which was developed mainly in Europe and the Unites States in the past, is growing explosively in East Asian countries accompanied by the recent growth of the Asian market. In summary, dental implant technology seems to be developing while trying to converge with various technological areas based on the local market environment. Therefore, it is necessary to develop a new dental implant material technology that is highly applicable to the development of hybrid information/communication technology and is suitable for a new manufacturing method. Our study may provide important information to help basic and translational researchers and their financial supporters set their research directions in advancing the development of dental implants.

9.
Cell Mol Life Sci ; 79(3): 155, 2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35218410

RESUMEN

Cellular senescence is closely related to tissue aging including bone. Bone homeostasis is maintained by the tight balance between bone-forming osteoblasts and bone-resorbing osteoclasts, but it undergoes deregulation with age, causing age-associated osteoporosis, a main cause of which is osteoblast dysfunction. Oxidative stress caused by the accumulation of reactive oxygen species (ROS) in bone tissues with aging can accelerate osteoblast senescence and dysfunction. However, the regulatory mechanism that controls the ROS-induced senescence of osteoblasts is poorly understood. Here, we identified Peptidyl arginine deiminase 2 (PADI2), a post-translational modifying enzyme, as a regulator of ROS-accelerated senescence of osteoblasts via RNA-sequencing and further functional validations. PADI2 downregulation by treatment with H2O2 or its siRNA promoted cellular senescence and suppressed osteoblast differentiation. CCL2, 5, and 7 known as the elements of the senescence-associated secretory phenotype (SASP) which is a secretome including proinflammatory cytokines and chemokines emitted by senescent cells and a representative feature of senescence, were upregulated by H2O2 treatment or Padi2 knockdown. Furthermore, blocking these SASP factors with neutralizing antibodies or siRNAs alleviated the senescence and dysfunction of osteoblasts induced by H2O2 treatment or Padi2 knockdown. The elevated production of these SASP factors was mediated by the activation of NFκB signaling pathway. The inhibition of NFκB using the pharmacological inhibitor or siRNA effectively relieved H2O2 treatment- or Padi2 knockdown-induced senescence and osteoblast dysfunction. Together, our study for the first time uncover the role of PADI2 in ROS-accelerated cellular senescence of osteoblasts and provide new mechanistic and therapeutic insights into excessive ROS-promoted cellular senescence and aging-related bone diseases.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Quimiocinas CC/metabolismo , Peróxido de Hidrógeno/farmacología , FN-kappa B/metabolismo , Arginina Deiminasa Proteína-Tipo 2/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Quimiocina CCL2/antagonistas & inhibidores , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL5/antagonistas & inhibidores , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiocina CCL7/antagonistas & inhibidores , Quimiocina CCL7/genética , Quimiocina CCL7/metabolismo , Quimiocinas CC/antagonistas & inhibidores , Quimiocinas CC/genética , Daño del ADN/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Ratones , Osteoblastos/citología , Osteoblastos/metabolismo , Arginina Deiminasa Proteína-Tipo 2/antagonistas & inhibidores , Arginina Deiminasa Proteína-Tipo 2/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
10.
J Cell Physiol ; 237(4): 2155-2168, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35048384

RESUMEN

The fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling pathway plays important roles in the development and growth of the skeleton. Apert syndrome caused by gain-of-function mutations of FGFR2 results in aberrant phenotypes of the skull, midface, and limbs. Although short limbs are representative features in patients with Apert syndrome, the causative mechanism for this limb defect has not been elucidated. Here we quantitatively confirmed decreases in the bone length, bone mineral density, and bone thickness in the Apert syndrome model of gene knock-in Fgfr2S252W/+ (EIIA-Fgfr2S252W/+ ) mice. Interestingly, despite these bone defects, histological analysis showed that the endochondral ossification process in the mutant mice was similar to that in wild-type mice. Tartrate-resistant acid phosphatase staining revealed that trabecular bone loss in mutant mice was associated with excessive osteoclast activity despite accelerated osteogenic differentiation. We investigated the osteoblast-osteoclast interaction and found that the increase in osteoclast activity was due to an increase in the Rankl level of osteoblasts in mutant mice and not enhanced osteoclastogenesis driven by the activation of FGFR2 signaling in bone marrow-derived macrophages. Consistently, Col1a1-Fgfr2S252W/+ mice, which had osteoblast-specific expression of Fgfr2 S252W, showed significant bone loss with a reduction of the bone length and excessive activity of osteoclasts was observed in the mutant mice. Taken together, the present study demonstrates that the imbalance in osteoblast and osteoclast coupling by abnormally increased Rankl expression in Fgfr2S252W/+ mutant osteoblasts is a major causative mechanism for bone loss and short long bones in Fgfr2S252W/+ mice.


Asunto(s)
Acrocefalosindactilia , Ligando RANK/metabolismo , Acrocefalosindactilia/genética , Acrocefalosindactilia/patología , Animales , Diferenciación Celular , Técnicas de Sustitución del Gen , Humanos , Ratones , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogénesis/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Cráneo/patología
11.
Clin Implant Dent Relat Res ; 23(6): 857-863, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34669245

RESUMEN

BACKGROUND AND PURPOSE: Significant research and development (R&D) has been conducted to make the best dental implants while developing various patent applications and registrations. In this study, we evaluated the current status of patents on dental implants and identified the future direction of R&D progress. MATERIALS AND METHODS: A total of 29 711 patents related to dental implants were reviewed. These were published between 1909 and 2020 and retrieved from the Derwent Innovation patent database. The patents were grouped into three categories depending on the implant components: fixture, abutment, and artificial teeth. RESULTS: The category with most patents was "abutment," and the most cited patent was "screw-type dental implant anchor." Global patenting trends over the past 20 years showed that both applicants and applications increased in the early 2010s; however, these have since been on the decline. Currently, the United States holds the largest number of patents, and Nobel Biocare Holding AG is the top assignee. Technic maturation prediction analysis showed that the current dental implant technology is in the "decline stage." CONCLUSION: Trend analysis of the dental implant patent indicates the main contributors of development are profit-oriented companies. Recent reduction in the number of new patent applications suggests the technology is in the mature declining stage. The emergence of new materials or technologies that may close the gap in clinical unmet needs would reverse the trend.


Asunto(s)
Implantes Dentales , Pilares Dentales
12.
Sci Rep ; 11(1): 7979, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846505

RESUMEN

Midface hypoplasia is a major manifestation of Apert syndrome. However, the tissue component responsible for midface hypoplasia has not been elucidated. We studied mice with a chondrocyte-specific Fgfr2S252W mutation (Col2a1-cre; Fgfr2S252W/+) to investigate the effect of cartilaginous components in midface hypoplasia of Apert syndrome. In Col2a1-cre; Fgfr2S252W/+ mice, skull shape was normal at birth, but hypoplastic phenotypes became evident with age. General dimensional changes of mutant mice were comparable with those of mice with mutations in EIIa-cre; Fgfr2S252W/+, a classic model of Apert syndrome in mice. Col2a1-cre; Fgfr2S252W/+ mice showed some unique facial phenotypes, such as elevated nasion, abnormal fusion of the suture between the premaxilla and the vomer, and decreased perpendicular plate of the ethmoid bone volume, which are related to the development of the nasal septal cartilage. Morphological and histological examination revealed that the presence of increased septal chondrocyte hypertrophy and abnormal thickening of nasal septum is causally related to midface deformities in nasal septum-associated structures. Our results suggest that careful examination and surgical correction of the nasal septal cartilage may improve the prognosis in the surgical treatment of midface hypoplasia and respiratory problems in patients with Apert syndrome.


Asunto(s)
Acrocefalosindactilia/patología , Condrocitos/patología , Cara/anomalías , Tabique Nasal/patología , Acrocefalosindactilia/diagnóstico por imagen , Animales , Colágeno Tipo II/metabolismo , Suturas Craneales/patología , Modelos Animales de Enfermedad , Cara/diagnóstico por imagen , Hipertrofia , Ratones , Mutación/genética , Tabique Nasal/diagnóstico por imagen , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Microtomografía por Rayos X
13.
Clin Epigenetics ; 13(1): 92, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902683

RESUMEN

BACKGROUND: The Encyclopedia of DNA Elements (ENCODE) project has advanced our knowledge of the functional elements in the genome and epigenome. The aim of this article was to provide the comprehension about current research trends from ENCODE project and establish the link between epigenetics and periodontal diseases based on epigenome studies and seek the future direction. MAIN BODY: Global epigenome research projects have emphasized the importance of epigenetic research for understanding human health and disease, and current international consortia show an improved interest in the importance of oral health with systemic health. The epigenetic studies in dental field have been mainly conducted in periodontology and have focused on DNA methylation analysis. Advances in sequencing technology have broadened the target for epigenetic studies from specific genes to genome-wide analyses. CONCLUSIONS: In line with global research trends, further extended and advanced epigenetic studies would provide crucial information for the realization of comprehensive dental medicine and expand the scope of ongoing large-scale research projects.


Asunto(s)
Epigenómica/métodos , Estudio de Asociación del Genoma Completo/métodos , Enfermedades Periodontales/genética , Epigénesis Genética , Humanos , Periodoncia/métodos
14.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673700

RESUMEN

It is widely accepted that sandblasted/large-grit/acid-etched (SLA) surfaces of titanium (Ti) have a higher osteogenic potential than machined ones. However, most studies focused on differential gene expression without elucidating the underlying mechanism for this difference. The aim of this study was to evaluate how the surface roughness of dental Ti implants affects their osteogenic potential. Mouse preosteoblast MC3T3-E1 cells were seeded on machined and SLA Ti discs. The cellular activities of the discs were analyzed using confocal laser scanning microscopy, proliferation assays, and real-time polymerase chain reaction (PCR). DNA methylation was evaluated using a methylation-specific PCR. The cell morphology was slightly different between the two types of surfaces. While cellular proliferation was slightly greater on the machined surfaces, the osteogenic response of the SLA surfaces was superior, and they showed increased alkaline phosphatase (Alp) activity and higher bone marker gene expression levels (Type I collagen, Alp, and osteocalcin). The degree of DNA methylation on the Alp gene was lower on the SLA surfaces than on the machined surfaces. DNA methyltransferase inhibitor stimulated the Alp gene expression on the machined surfaces, similar to the SLA surfaces. The superior osteogenic potential of the SLA surfaces can be attributed to a different epigenetic landscape, specifically, the DNA methylation of Alp genes. This finding offers novel insights into epigenetics to supplement genetics and raises the possibility of using epidrugs as potential therapeutic targets to enhance osteogenesis on implant surfaces.


Asunto(s)
Fosfatasa Alcalina/genética , Diferenciación Celular , Metilación de ADN , Osteoblastos/citología , Osteogénesis , Titanio/farmacología , Fosfatasa Alcalina/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Epigénesis Genética , Ratones , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Propiedades de Superficie , Titanio/química
15.
ACS Nano ; 14(10): 13217-13231, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32969647

RESUMEN

Male infertility is a multifactorial condition. Unexplained male infertility is often caused by spermatogenesis dysfunction. Knockout of Pin1, an important regulator of cell proliferation and differentiation, produces male infertility phenotypes such as testicular immaturity and azoospermia with spermatogonia depletion and blood-testis barrier (BTB) dysfunction. Gene therapy has been clinically considered for the treatment of male infertility, but it is not preferred because of the risks of adverse effects in germ cells. Direct intracellular protein delivery using nanoparticles is considered an effective alternative to gene therapy; however, in vivo testicular protein delivery remains a pressing challenge. Here, we investigated the direct intracellular protein delivery strategy using a fibroin nanoparticle-encapsulated cationic lipid complex (Fibroplex) to restore intratesticular PIN1. Local intratesticular delivery of PIN1 via Fibroplex in Pin1 knockout testes produced fertile mice, achieving recovery from the infertile phenotypes. Mechanistically, PIN1-loaded Fibroplex was successfully delivered into testicular cells, including spermatogonial cells and Sertoli cells, and the sustained release of PIN1 restored the gene expression required for the proliferation of spermatogonial cells and BTB integrity in Pin1 knockout testes. Collectively, testicular PIN1 protein delivery using Fibroplex might be an effective strategy for treating male infertility.


Asunto(s)
Fibroínas , Infertilidad Masculina , Nanopartículas , Animales , Humanos , Infertilidad Masculina/tratamiento farmacológico , Lípidos , Masculino , Ratones , Ratones Noqueados , Peptidilprolil Isomerasa de Interacción con NIMA , Isomerasa de Peptidilprolil
16.
Exp Mol Med ; 52(8): 1178-1184, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32788656

RESUMEN

RUNX2 is a master transcription factor of osteoblast differentiation. RUNX2 expression in the bone and osteogenic front of a suture is crucial for cranial suture closure and membranous bone morphogenesis. In this manner, the regulation of RUNX2 is precisely controlled by multiple posttranslational modifications (PTMs) mediated by the stepwise recruitment of multiple enzymes. Genetic defects in RUNX2 itself or in its PTM regulatory pathways result in craniofacial malformations. Haploinsufficiency in RUNX2 causes cleidocranial dysplasia (CCD), which is characterized by open fontanelle and hypoplastic clavicles. In contrast, gain-of-function mutations in FGFRs, which are known upstream stimulating signals of RUNX2 activity, cause craniosynostosis (CS) characterized by premature suture obliteration. The identification of these PTM cascades could suggest suitable drug targets for RUNX2 regulation. In this review, we will focus on the mechanism of RUNX2 regulation mediated by PTMs, such as phosphorylation, prolyl isomerization, acetylation, and ubiquitination, and we will summarize the therapeutics associated with each PTM enzyme for the treatment of congenital cranial suture anomalies.


Asunto(s)
Enfermedades Óseas/terapia , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Enzimas/metabolismo , Terapia Molecular Dirigida , Acetilación , Animales , Humanos , Procesamiento Proteico-Postraduccional
17.
Proc Natl Acad Sci U S A ; 117(9): 4910-4920, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32071240

RESUMEN

Growth and differentiation factor 11 (GDF11) and myostatin (MSTN) are closely related transforming growth factor ß (TGF-ß) family members, but their biological functions are quite distinct. While MSTN has been widely shown to inhibit muscle growth, GDF11 regulates skeletal patterning and organ development during embryogenesis. Postnatal functions of GDF11, however, remain less clear and controversial. Due to the perinatal lethality of Gdf11 null mice, previous studies used recombinant GDF11 protein to prove its postnatal function. However, recombinant GDF11 and MSTN proteins share nearly identical biochemical properties, and most GDF11-binding molecules have also been shown to bind MSTN, generating the possibility that the effects mediated by recombinant GDF11 protein actually reproduce the endogenous functions of MSTN. To clarify the endogenous functions of GDF11, here, we focus on genetic studies and show that Gdf11 null mice, despite significantly down-regulating Mstn expression, exhibit reduced bone mass through impaired osteoblast (OB) and chondrocyte (CH) maturations and increased osteoclastogenesis, while the opposite is observed in Mstn null mice that display enhanced bone mass. Mechanistically, Mstn deletion up-regulates Gdf11 expression, which activates bone morphogenetic protein (BMP) signaling pathway to enhance osteogenesis. Also, mice overexpressing follistatin (FST), a MSTN/GDF11 inhibitor, exhibit increased muscle mass accompanied by bone fractures, unlike Mstn null mice that display increased muscle mass without fractures, indicating that inhibition of GDF11 impairs bone strength. Together, our findings suggest that GDF11 promotes osteogenesis in contrast to MSTN, and these opposing roles of GDF11 and MSTN must be considered to avoid the detrimental effect of GDF11 inhibition when developing MSTN/GDF11 inhibitors for therapeutic purposes.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Huesos/metabolismo , Factores de Diferenciación de Crecimiento/metabolismo , Desarrollo de Músculos/fisiología , Miostatina/metabolismo , Osteogénesis/fisiología , Animales , Proteínas Morfogenéticas Óseas/genética , Huesos/patología , Condrocitos/metabolismo , Regulación hacia Abajo , Folistatina , Regulación del Desarrollo de la Expresión Génica , Factores de Diferenciación de Crecimiento/genética , Ratones , Ratones Noqueados , Músculos/patología , Osteoblastos/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
18.
Gene ; 733: 144274, 2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-31809844

RESUMEN

Bone regeneration has been a challenge for both researchers and clinicians. In the field of tissue engineering, much effort has been made to identify cell sources including stem cells. The present study aimed to induce trans-differentiation from adipocytes to osteoblasts using epigenetic modifiers; 5-aza-dC and/or trichostatin-A (TSA). 3 T3-L1 preadipocytes were treated with TSA (100 nM) and then with Wnt3a (50 ng/ml). Microscopic observation showed trans-differentiated cell morphology. Methylation-specific PCR and immunoblotting were performed to analyze the DNA methylation and histone acetylation patterns. The gene expression was determined by real-time PCR. Based on these in vitro experiments, in vivo mouse experiments supplemented the possibility of trans-differentiation by epigenetic modification. TSA induced the acetylation of lysine9 on histone H3, and a sequential Wnt3a treatment stimulated the expression of bone marker genes in adipocytes, suppressing adipogenesis and stimulating osteogenesis. Furthermore, TSA induced DNA hypomethylation, and a combined treatment with TSA and 5-aza-dC showed a synergistic effect in epigenetic modifications. The number of adipocytes and DNA methylation patterns of old (15 months) and young (6 weeks) mice were significantly different, and TSA and sequential Wnt3a treatments increased bone formation in the old mice. Collectively, our results confirmed cell trans-differentiation via epigenetic modifications and osteogenic signaling from adipocytes to osteoblasts for the bone regeneration in vitro and in vivo, and indicated that histone acetylation could induce DNA hypomethylation, enhancing the chance of trans-differentiation.


Asunto(s)
Adipocitos/metabolismo , Diferenciación Celular/efectos de los fármacos , Osteoblastos/metabolismo , Células 3T3-L1 , Acetilación , Adipocitos/efectos de los fármacos , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Islas de CpG , Desmetilación del ADN/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Decitabina/metabolismo , Decitabina/farmacología , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/genética , Epigenómica/métodos , Inhibidores de Histona Desacetilasas/farmacología , Histonas/genética , Histonas/metabolismo , Ácidos Hidroxámicos/metabolismo , Ácidos Hidroxámicos/farmacología , Ratones , Osteoblastos/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Procesamiento Proteico-Postraduccional/genética
19.
Gene ; 727: 144258, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31759984

RESUMEN

Peri-implantitis is similar to periodontitis in both symptoms and treatment; however, their level of similarity remains controversial. Here, we compared multiple cases of periodontitis and peri-implantitis through transcriptome and methylome profiling, and analyzed the effects of smoking as a typical risk factor. Human gingival tissues were obtained from 20 patients with periodontitis or peri-implantitis via periodontal surgical procedures. Total RNA and genomic DNA were isolated, and transcriptome and methylome datasets were generated. Comprehensive analysis of differential gene expression, DNA methylation, and protein-protein interactions indicated that periodontitis and peri-implantitis share biological similarities; however, hierarchical clustering between the two disease groups revealed distinct molecular characteristics. These differences might be related to structural differences in natural tooth-bone and implant-bone. Additionally, smoking differentially affected periodontitis and peri-implantitis in terms of host-defense mechanism impairment. Within the limitations of this study, the results provide evidence that peri-implantitis is distinct from periodontitis and that smoking potentially affects disease progression. Our study provides a foundation for the rational design of a large-scale study in the future for a more comprehensive analysis that includes microbiome and clinical data.


Asunto(s)
Periimplantitis/genética , Periodontitis/genética , Epigenoma/genética , Femenino , Perfilación de la Expresión Génica/métodos , Encía/microbiología , Humanos , Masculino , Microbiota/genética , Persona de Mediana Edad , Periimplantitis/metabolismo , Factores de Riesgo , Fumar , Uso de Tabaco/efectos adversos , Uso de Tabaco/genética , Transcriptoma/genética
20.
Mol Cells ; 43(2): 160-167, 2020 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-31878768

RESUMEN

Runt-related transcription factor 2 (RUNX2) is a key transcription factor for bone formation and osteoblast differentiation. Various signaling pathways and mechanisms that regulate the expression and transcriptional activity of RUNX2 have been thoroughly investigated since the involvement of RUNX2 was first reported in bone formation. As the regulation of Runx2 expression by extracellular signals has recently been reviewed, this review focuses on the regulation of post-translational RUNX2 activity. Transcriptional activity of RUNX2 is regulated at the post-translational level by various enzymes including kinases, acetyl transferases, deacetylases, ubiquitin E3 ligases, and prolyl isomerases. We describe a sequential and linear causality between post-translational modifications of RUNX2 by these enzymes. RUNX2 is one of the most important osteogenic transcription factors; however, it is not a suitable drug target. Here, we suggest enzymes that directly regulate the stability and/or transcriptional activity of RUNX2 at a post-translational level as effective drug targets for treating bone diseases.


Asunto(s)
Procesamiento Proteico-Postraduccional/genética , Factores de Transcripción/metabolismo , Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...