RESUMEN
A liquid Ga-based synaptic device with two-terminal electrodes is demonstrated in NaOH solutions at 50 °C. The proposed electrochemical redox device using the liquid Ga electrode in the NaOH solution can emulate various biological synapses that require different decay constants. The device exhibits a wide range of current decay times from 60 to 320 ms at different NaOH mole concentrations from 0.2 to 1.6 M. This research marks a step forward in the development of flexible and biocompatible neuromorphic devices that can be utilized for a range of applications where different synaptic strengths are required lasting from a few milliseconds to seconds.
RESUMEN
An ionic device using a liquid Ga electrode in a 1 M NaOH solution is proposed to generate artificial neural spike signals. The oxidation and reduction at the liquid Ga surface were investigated for different bias voltages at 50 °C. When the positive sweep voltage from the starting voltage (V S) of 1 V was applied to the Ga electrode, the oxidation current flowed immediately and decreased exponentially with time. The spike and decay current behavior resembled the polarization and depolarization at the influx and extrusion of Ca2+ in biological synapses. Different average decay times of â¼81 and â¼310 ms were implemented for V S of -2 and -5 V, respectively, to mimic the synaptic responses to short- and long-term plasticity; these decay states can be exploited for application in binary electrochemical memory devices. The oxidation mechanism of liquid Ga was studied. The differences in Ga ion concentration due to V S led to differences in oxidation behavior. Our device is beneficial for the organ cell-machine interface system because liquid Ga is biocompatible and flexible; thus, it can be applied in biocompatible and flexible neuromorphic device development for neuroprosthetics, human cell-machine interface formation, and personal health care monitoring.
RESUMEN
A fast-response colorimetric ultraviolet-C (UVC) sensor was demonstrated using a gallium oxide (Ga2O3) photocatalyst with small amounts of triethanolamine (TEOA) in methylene blue (MB) solutions and a conventional RGB photodetector. The color of the MB solution changed upon UVC exposure, which was observed using an in situ RGB photodetector. Thereby, the UVC exposure was numerically quantified as an MB reduction rate with the R value of the photodetector, which was linearly correlated with the measured spectral absorbance using a UV-Vis spectrophotometer. Small amount of TEOA in the MB solution served as a hole scavenger, which resulted in fast MB color changes due to the enhanced charge separation. However, excessive TEOA over 5 wt.% started to block the catalytical active site on the surface of Ga2O3, prohibiting the chemical reaction between the MB molecules and catalytic sites. The proposed colorimetric UVC sensor could monitor the detrimental UVC radiation with high responsivity at a low cost.
RESUMEN
Aluminum (Al)-doped beta-phase gallium oxide (ß-Ga2O3) nanostructures with different Al concentrations (0 to 3.2 at%) are synthesized using a hydrothermal method. The single phase of the ß-Ga2O3 is maintained without intermediate phases up to Al 3.2 at% doping. As the Al concentration in the ß-Ga2O3 nanostructures increases, the optical bandgap of the ß-Ga2O3 increases from 4.69 (Al 0%) to 4.8 (Al 3.2%). The physical, chemical, and optical properties of the Al-doped ß-Ga2O3 nanostructures are correlated with photocatalytic activity via the degradation of a methylene blue solution under ultraviolet light (254 nm) irradiation. The photocatalytic activity is enhanced by doping a small amount of substitutional Al atoms (0.6 at%) that presumably create shallow level traps in the band gap. These shallow traps retard the recombination process by separating photogenerated electron-hole pairs. On the other hand, once the Al concentration in the Ga2O3 exceeds 0.6 at%, the crystallographic disorder, oxygen vacancy, and grain boundary-related defects increase as the Al concentration increases. These defect-related energy levels are broadly distributed within the bandgap, which act as carrier recombination centers and thereby degrade the photocatalytic activity. The results of this work provide new opportunities for the synthesis of highly effective ß-Ga2O3-based photocatalysts that can generate hydrogen gas and remove harmful volatile organic compounds.