Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2402854, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39193666

RESUMEN

Carbon nanotubes (CNTs), owing to their superior electrical and mechanical properties, are a promising alternative to nonmetallic electrically conducting materials. In practice, cellulose as a low-cost sustainable matrix has been used to prepare the aqueous dispersion of cellulose-CNT (C-CNT) nanocomposites. However, the compatibility with conventional solution-processing and structural rearrangement for improving conductivity has yet to be determined. Herein, a straightforward route to prepare a conductive composite material from single-walled CNTs (SWCNTs) and natural pulp is reported. High-power shaking realizes the self-alignment of individual SWCNTs in a cellulose matrix, resulting from the structural change in molecular orientations owing to countless collisions of zirconia beads in the aqueous mixture. The structural analysis of the dried C-CNT films confirms that the entanglement and dispersion of C-CNT nanowires determine the mechanical and electrical properties. Moreover, the rheological behavior of C-CNT inks explains their coating and printing characteristics. By controlling shaking time, the electrical conductivity of the C-CNT films with only 9 wt.% of SWCNTs from 0.9 to 102.4 S cm-1 are adjusted. the optimized C-CNT ink is highly compatible with the conventional coating and printing processes on diverse substrates, thus finding potential applications in eco-friendly, highly flexible, and stretchable electrodes is also demonstrated.

2.
ACS Appl Mater Interfaces ; 16(35): 46664-46676, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39180554

RESUMEN

Recent advances in numerous biological applications have increased the accuracy of monitoring the level of biologically significant analytes in the human body to manage personal nutrition and physiological conditions. However, despite promising reports about costly wearable devices with high sensing performance, there has been a growing demand for inexpensive sensors that can quickly detect biological molecules. Herein, we present highly sensitive biosensors based on organic electrochemical transistors (OECTs), which are types of organic semiconductor-based sensors that operate consistently at low operating voltages in aqueous solutions. Instead of the gold or platinum electrode used in current electrochemical devices, poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) was used as both the channel and gate electrodes in the OECT. Additionally, to overcome the patterning resolution limitations of conventional solution processing, we confirmed that the irradiation of a high-power IR laser (λ = 1064 nm) onto the coated PEDOT:PSS film was able to produce spatially resolvable micropatterns in a digital-printing manner. The proposed patterning technique exhibits high suitability for the fabrication of all-PEDOT:PSS OECT devices. The device geometry was optimized by fine-tuning the gate area and the channel-to-gate distance. Consequently, the sensor for detecting ascorbic acid (vitamin C) concentrations in an electrolyte exhibited the best sensitivity of 125 µA dec-1 with a limit of detection of 1.3 µM, which is nearly 2 orders of magnitude higher than previous findings. Subsequently, an all-plastic flexible epidermal biosensor was established by transferring the patterned all-PEDOT:PSS OECT from a glass substrate to a PET substrate, taking full advantage of the flexibility of PEDOT:PSS. The prepared all-plastic sensor device is highly cost-effective and suitable for single-use applications because of its acceptable sensing performance and reliable signal for detecting vitamin C. Additionally, the epidermal sensor successfully obtained the temporal profile of vitamin C in the sweat of a human volunteer after the consumption of vitamin C drinks. We believe that the highly sensitive all-PEDOT:PSS OECT device fabricated using the accurate patterning process exhibits versatile potential as a low-cost and single-use biosensor for emerging bioelectronic applications.


Asunto(s)
Técnicas Biosensibles , Rayos Láser , Poliestirenos , Transistores Electrónicos , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Poliestirenos/química , Humanos , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Ácido Ascórbico/análisis , Ácido Ascórbico/química , Polímeros/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Electrodos , Sudor/química , Tiofenos
3.
ACS Appl Mater Interfaces ; 16(19): 25053-25064, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690839

RESUMEN

Among various conductive polymers, the poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) film has been studied as a promising material for use as a transparent electrode and a hole-injecting layer in organic optoelectronic devices. Due to the increasing demand for the low-cost fabrication of organic light-emitting diodes (OLEDs), PEDOT:PSS has been employed as the top electrode by using the coating or lamination method. Herein, a facile method is reported for the fabrication of highly efficient polymer light-emitting diodes (PLEDs) based on a laminated transparent electrode (LTE) consisting of successive PEDOT:PSS and silver-nanowire (AgNW) layers. In particular, thermally induced phase separation (TIPS) of the PEDOT:PSS film is found to depend on the annealing temperature (Tanneal) during preparation of the LTE. At Tanneal close to the glass transition temperature of the PSS chains, a PSS-rich phase with a large number of PSS- molecules enhances the work function of the PEDOT:PSS on the glass-side surface relative to the air side. By using the optimized LTEs, bidirectional laminated PLEDs are obtained with a total external quantum efficiency of 2.9% and a turn-on voltage of 2.6 V, giving a comparable performance to that of the reference bottom-emitting PLED based on a costly evaporated metal electrode. In addition, an analysis of the angular characteristics, including the variation in the electroluminescence spectra and the change in luminance according to the emission angle, indicates that the laminated PLED with the LTE provides a more uniform angular distribution regardless of the direction of emission. Detailed optical and electrical analyses are also performed to evaluate the suitability of LTEs for the low-cost fabrication of efficient PLEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...