Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39189851

RESUMEN

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease for which current treatment options only slow clinical progression. Previously, we identified a subset of patients with IPF with an accelerated disease course associated with fibroblast expression of Toll-Like Receptor 9 (TLR9) mediated by interactions with its ligand mitochondrial DNA (mtDNA). OBJECTIVES: We aimed to show that TLR9 activation induces fibroproliferative responses that are abrogated by its antagonism by using two commercially-available indirect inhibitors and a proprietary, selective direct small molecule inhibitor. METHODS: We employed two independent cohorts of patients with IPF, multiple in vitro fibroblast cell culture platforms, an in vivo mouse model, and an ex vivo human precision cut lung slices system to investigate the clinical and biologic significance of TLR9 in this disease. MEASUREMENTS AND MAIN RESULTS: In two independent IPF cohorts, plasma mtDNA activates TLR9 in a manner associated with the expression of MCP-1, IL-6, TNFα, and IP-10 and worsened transplant-free survival. Our cell culture platform showed that TLR9 mediates fibroblast activation via TGFß1 and stiff substrates, and that its antagonism, particularly direct inhibition, ameliorates this process, including production of these TLR9 associated pharmacodynamic endpoints. We further demonstrated that direct TLR9 inhibition mitigates these fibroproliferative responses in our in vivo and ex vivo models of pulmonary fibrosis. CONCLUSIONS: In this novel study, we found that direct TLR9 inhibition mitigates fibroproliferative responses in preclinical models of pulmonary fibrosis. Our work demonstrates the therapeutic potential of direct TLR9 antagonism in IPF and related fibrotic lung diseases.

2.
Thorax ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39117421

RESUMEN

INTRODUCTION: The pathogenesis of sarcoidosis involves tissue remodelling mediated by the accumulation of abnormal extracellular matrix, which is partly the result of an imbalance in collagen synthesis, cross-linking and degradation. During this process, collagen fragments or neoepitopes, are released into the circulation. The significance of these circulating collagen neoepitopes in sarcoidosis remains unknown. METHODS: We employed plasma samples from patients with sarcoidosis enrolled in A Case Control Etiologic Study of Sarcoidosis (ACCESS) and Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS), and healthy control patients recruited from the Yale community. Plasma concentrations of type III and VI collagen degradation (C3M and C6M) and formation (PRO-C3 and PRO-C6) were quantified via neoepitope-specific competitive ELISA, and statistical associations were sought with clinical phenotypes. RESULTS: Relative to healthy controls, the plasma of both sarcoidosis cohorts was enriched for C3M and C6M, irrespective of corticosteroid use and disease duration. While circulating collagen neoepitopes were independent of Scadding stage, there was a significant association between multiorgan disease and PRO-C3, PRO-C6 and C3M in the ACCESS cohort; PRO-C3 and C6M displayed this property in GRADS. These findings were unrelated to plasma levels of interleukin-4 (IL-4), IL-5, IL-6, IL-9, IL-10 and IL-13. Moreover, PRO-C3 was associated with dermatological disease in both cohorts. DISCUSSION: In two well-characterised sarcoidosis cohorts, we discovered that the plasma is enriched for neoepitopes of collagen degradation (C3M and C6M). In multiorgan disease, there was an association with circulating neoepitopes of type III formation (PRO-C3), perhaps mediated by dermatological sarcoidosis. Further investigation in this arena has the potential to foster new insights into the pathogenic mechanisms of this complex disease.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38924775

RESUMEN

Rationale: Fibrotic hypersensitivity pneumonitis is a debilitating interstitial lung disease driven by incompletely understood immune mechanisms. Objectives: To elucidate immune aberrations in fibrotic hypersensitivity pneumonitis in single-cell resolution. Methods: Single-cell 5' RNA sequencing was conducted on peripheral blood mononuclear cells and bronchoalveolar lavage cells obtained from 45 patients with fibrotic hypersensitivity pneumonitis, 63 idiopathic pulmonary fibrosis, 4 non-fibrotic hypersensitivity pneumonitis, and 36 healthy controls in the United States and Mexico. Analyses included differential gene expression (Seurat), transcription factor activity imputation (DoRothEA-VIPER), and trajectory analyses (Monocle3/Velocyto-scVelo-CellRank). Measurements and Main Results: Overall, 501,534 peripheral blood mononuclear cells from 110 patients and controls and 88,336 bronchoalveolar lavage cells from 19 patients were profiled. Compared to controls, fibrotic hypersensitivity pneumonitis has elevated classical monocytes (adjusted-p=2.5e-3) and are enriched in CCL3hi/CCL4hi and S100Ahi classical monocytes (adjusted-p<2.2e-16). Trajectory analyses demonstrate that S100Ahi classical monocytes differentiate into SPP1hi lung macrophages associated with fibrosis. Compared to both controls and idiopathic pulmonary fibrosis, fibrotic hypersensitivity pneumonitis patient cells are significantly enriched in GZMhi cytotoxic T cells. These cells exhibit transcription factor activities indicative of TGFß and TNFα/NFκB pathways. These results are publicly available at https://ildimmunecellatlas.org. Conclusions: Single-cell transcriptomics of fibrotic hypersensitivity pneumonitis patients uncovered novel immune perturbations, including previously undescribed increases in GZMhi cytotoxic CD4+ and CD8+ T cells - reflecting this disease's unique inflammatory T-cell driven nature - as well as increased S100Ahi and CCL3hi/CCL4hi classical monocytes also observed in idiopathic pulmonary fibrosis. Both cell populations may guide the development of new biomarkers and therapeutic interventions.

4.
Am J Respir Crit Care Med ; 210(4): 484-496, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38717443

RESUMEN

Rationale: Changes in peripheral blood cell populations have been observed, but not detailed, at single-cell resolution in idiopathic pulmonary fibrosis (IPF). Objectives: We sought to provide an atlas of the changes in the peripheral immune system in stable and progressive IPF. Methods: Peripheral blood mononuclear cells (PBMCs) from patients with IPF and control subjects were profiled using 10× chromium 5' single-cell RNA sequencing. Flow cytometry was used for validation. Protein concentrations of regulatory T cells (Tregs) and monocyte chemoattractants were measured in plasma and lung homogenates from patients with IPF and control subjects. Measurements and Main Results: Thirty-eight PBMC samples from 25 patients with IPF and 13 matched control subjects yielded 149,564 cells that segregated into 23 subpopulations. Classical monocytes were increased in patients with progressive and stable IPF compared with control subjects (32.1%, 25.2%, and 17.9%, respectively; P < 0.05). Total lymphocytes were decreased in patients with IPF versus control subjects and in progressive versus stable IPF (52.6% vs. 62.6%, P = 0.035). Tregs were increased in progressive versus stable IPF (1.8% vs. 1.1% of all PBMCs, P = 0.007), although not different than controls, and may be associated with decreased survival (P = 0.009 in Kaplan-Meier analysis; and P = 0.069 after adjusting for age, sex, and baseline FVC). Flow cytometry analysis confirmed this finding in an independent cohort of patients with IPF. The fraction of Tregs out of all T cells was also increased in two cohorts of lung single-cell RNA sequencing. CCL22 and CCL18, ligands for CCR4 and CCR8 Treg chemotaxis receptors, were increased in IPF. Conclusions: The single-cell atlas of the peripheral immune system in IPF reveals an outcome-predictive increase in classical monocytes and Tregs, as well as evidence for a lung-blood immune recruitment axis involving CCL7 (for classical monocytes) and CCL18/CCL22 (for Tregs).


Asunto(s)
Fibrosis Pulmonar Idiopática , Leucocitos Mononucleares , Análisis de la Célula Individual , Linfocitos T Reguladores , Humanos , Fibrosis Pulmonar Idiopática/inmunología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Análisis de la Célula Individual/métodos , Linfocitos T Reguladores/inmunología , Leucocitos Mononucleares/inmunología , Progresión de la Enfermedad , Estudios de Casos y Controles , Citometría de Flujo
5.
Proc Natl Acad Sci U S A ; 121(18): e2319566121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648490

RESUMEN

Respiratory virus infections in humans cause a broad-spectrum of diseases that result in substantial morbidity and mortality annually worldwide. To reduce the global burden of respiratory viral diseases, preventative and therapeutic interventions that are accessible and effective are urgently needed, especially in countries that are disproportionately affected. Repurposing generic medicine has the potential to bring new treatments for infectious diseases to patients efficiently and equitably. In this study, we found that intranasal delivery of neomycin, a generic aminoglycoside antibiotic, induces the expression of interferon-stimulated genes (ISGs) in the nasal mucosa that is independent of the commensal microbiota. Prophylactic or therapeutic administration of neomycin provided significant protection against upper respiratory infection and lethal disease in a mouse model of COVID-19. Furthermore, neomycin treatment protected Mx1 congenic mice from upper and lower respiratory infections with a highly virulent strain of influenza A virus. In Syrian hamsters, neomycin treatment potently mitigated contact transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In healthy humans, intranasal application of neomycin-containing Neosporin ointment was well tolerated and effective at inducing ISG expression in the nose in a subset of participants. These findings suggest that neomycin has the potential to be harnessed as a host-directed antiviral strategy for the prevention and treatment of respiratory viral infections.


Asunto(s)
Administración Intranasal , Antivirales , Neomicina , SARS-CoV-2 , Animales , Neomicina/farmacología , Neomicina/administración & dosificación , Ratones , Humanos , Antivirales/farmacología , Antivirales/administración & dosificación , SARS-CoV-2/inmunología , SARS-CoV-2/efectos de los fármacos , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/prevención & control , Mucosa Nasal/inmunología , Mucosa Nasal/virología , Mucosa Nasal/efectos de los fármacos , Modelos Animales de Enfermedad , Tratamiento Farmacológico de COVID-19 , Mesocricetus , Femenino , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/inmunología
6.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38496452

RESUMEN

Host response aimed at eliminating the infecting pathogen, as well as the pathogen itself, can cause tissue injury. Tissue injury leads to the release of a myriad of cellular components including mitochondrial DNA, which the host senses through pattern recognition receptors. How the sensing of tissue injury by the host shapes the anti-pathogen response remains poorly understood. In this study, we utilized mice that are deficient in toll-like receptor-9 (TLR9), which binds to unmethylated CpG DNA sequences such as those present in bacterial and mitochondrial DNA. To avoid direct pathogen sensing by TLR9, we utilized the influenza virus, which lacks ligands for TLR9, to determine how damage sensing by TLR9 contributes to anti-influenza immunity. Our data show that TLR9-mediated sensing of tissue damage promotes an inflammatory response during early infection, driven by the myeloid cells and associated cytokine responses. Along with the diminished inflammatory response, the absence of damage sensing through TLR9 led to impaired viral clearance manifested as a higher and prolonged influenza burden in the lung. The absence of TLR9 led to extensive infection of myeloid cells including monocytes and macrophages rendering them highly inflammatory, despite having a low initial inflammatory response. The persistent inflammation driven by infected myeloid cells led to persistent lung injury and impaired recovery in influenza-infected TLR9-/- mice. Further, we show elevated circulating TLR9 ligands in the plasma samples of patients with influenza, demonstrating its clinical relevance. Overall, over data show an essential role of damage sensing through TLR9 in promoting anti-influenza immunity.

7.
Int Forum Allergy Rhinol ; 14(8): 1294-1301, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38343306

RESUMEN

BACKGROUND: Dysregulation of the airway microbiota is thought to contribute to airway inflammation in both chronic rhinosinusitis (CRS) and asthma. However, the relationship between the upper and lower airway microbiome remains unclear. METHODS: Sinus and lung brushes were collected from 29 CRS participants undergoing sinus surgery. DNA was extracted and submitted for 16s rRNA microbiome sequencing. Alpha and beta diversity metrics, taxonomic composition, and differences between individual taxa were compared for paired sinus and bronchial samples. RESULTS: Twenty-three out of 29 participants had sufficient samples for analysis. The mean (standard deviation) age was 51.59 (14.57) years, and 10 (44%) patients were female. Twelve (52%) patients had comorbid asthma. Sinus brushes had significantly higher alpha diversity indexes (Shannon and Faith) compared to bronchial brushes (p < 0.001). Beta diversity metrics were significantly different between the sinus and bronchial samples. Principal coordinate analysis showed no clustering of paired nasal and bronchial samples. Sinus brushes had significantly more Lawsonella, Corynebacterium, and Staphylococcus compared to bronchia brushes, while the latter were enriched in Tropheryma and Sphingomonas, among others (false discovery rate [FDR]-adjusted p < 0.01). Finally, CRS patients with comorbid asthma had significantly higher Pseudomonas and Peptoniphilus in sinus brushes and lower Prevotella in bronchial brushes when compared to non-asthmatics (FDR-adjusted p < 0.01). CONCLUSION: The sinus and bronchial bacterial microbiomes differ in important ways. Our study suggests that migration of bacteria from the sinus into the lower airways is unlikely in patients with CRS.


Asunto(s)
Asma , Microbiota , Senos Paranasales , Rinitis , Sinusitis , Humanos , Sinusitis/microbiología , Femenino , Rinitis/microbiología , Persona de Mediana Edad , Masculino , Enfermedad Crónica , Adulto , Asma/microbiología , Senos Paranasales/microbiología , Anciano , Bronquios/microbiología , ARN Ribosómico 16S/genética , Bacterias/aislamiento & purificación , Bacterias/genética , Bacterias/clasificación , Pulmón/microbiología , Rinosinusitis
8.
Chest ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37977267

RESUMEN

BACKGROUND: Patients with sarcoidosis who develop severe clinical phenotypes of pulmonary fibrosis or multiorgan disease experience debilitating symptoms, with fatigue being a common chief complaint. Studies that have investigated this patient-related outcome measure (PROM) have used the Fatigue Assessment Scale (FAS), a self-reported questionnaire that reflects mental and physical domains. Despite extensive work, its cause is unknown and treatment options remain limited. Previously, we showed that the plasma of patients with sarcoidosis with extrapulmonary disease endorsing fatigue was enriched for mitochondrial DNA (mtDNA), a ligand for the innate immune receptor toll-like receptor 9 (TLR9). Through our cross-disciplinary platform, we investigated a relationship between sarcoidosis-induced fatigue and circulating mtDNA. RESEARCH QUESTION: Is there a psychobiologic mechanism that connects sarcoidosis-induced fatigue and mtDNA-mediated TLR9 activation? STUDY DESIGN AND METHODS: Using a local cohort of patients at Yale (discovery cohort) and the National Institutes of Health-sponsored Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis study (validation cohort), we scored the FAS and quantified in the plasma, mtDNA concentrations, TLR9 activation, and cytokine levels. RESULTS: Although FAS scores were independent of corticosteroid use and Scadding stage, we observed a robust association between FAS scores, which included mental and physical domains, and multiorgan sarcoidosis. Subsequently, we identified a significant correlation between plasma mtDNA concentrations and all domains of fatigue. Additionally, we found that TLR9 activation is associated with all aspects of the FAS and partially mediates this PROM through mtDNA. Last, we found that TLR9-associated soluble mediators in the plasma are independent of all facets of fatigue. INTERPRETATION: Through our cross-disciplinary translational platform, we identified a previously unrecognized psychobiologic connection between sarcoidosis-induced fatigue and circulating mtDNA concentrations. Mechanistic work that investigates the contribution of mtDNA-mediated innate immune activation in this PROM and clinical studies with prospective cohorts has the potential to catalyze novel therapeutic strategies for this patient population and those with similar conditions.

9.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37786685

RESUMEN

Rationale and Objectives: The extent and commonality of peripheral blood immune aberrations in fibrotic interstitial lung diseases are not well characterized. In this study, we aimed to identify common and distinct immune aberrations in patients with idiopathic pulmonary fibrosis (IPF) and fibrotic hypersensitivity pneumonitis (FHP) using cutting-edge single-cell profiling technologies. Methods: Single-cell RNA sequencing was performed on patients and healthy controls' peripheral blood and bronchoalveolar lavage samples using 10X Genomics 5' gene expression and V(D)J profiling. Cell type composition, transcriptional profiles, cellular trajectories and signaling, and T and B cell receptor repertoires were studied. The standard Seurat R pipeline was followed for cell type composition and differential gene expression analyses. Transcription factor activity was imputed using the DoRothEA-VIPER algorithm. Pseudotime analyses were conducted using Monocle3, while RNA velocity analyses were performed with Velocyto, scVelo, and CellRank. Cell-cell connectomics were assessed using the Connectome R package. V(D)J analyses were conducted using CellRanger and Immcantation frameworks. Across all analyses, disease group differences were assessed using the Wilcoxon rank-sum test. Measurements and Main Results: 327,990 cells from 83 samples were profiled. Overall, changes in monocytes were common to IPF and FHP, whereas lymphocytes exhibited disease-specific aberrations. Both diseases displayed enrichment of CCL3 hi /CCL4 hi CD14+ monocytes (p<2.2e-16) and S100A hi CD14+ monocytes (p<2.2e-16) versus controls. Trajectory and RNA velocity analysis suggested that pro-fibrotic macrophages observed in BAL originated from peripheral blood monocytes. Lymphocytes exhibited disease-specific aberrations, with CD8+ GZMK hi T cells and activated B cells primarily enriched in FHP patients. V(D)J analyses revealed unique T and B cell receptor complementarity-determining region 3 (CDR3) amino acid compositions (p<0.05) in FHP and significant IgA enrichment in IPF (p<5.2e-7). Conclusions: We identified common and disease-specific immune mechanisms in IPF and FHP; S100A hi monocytes and SPP1 hi macrophages are common to IPF and FHP, whereas GMZK hi T lymphocytes and T and B cell receptor repertoires were unique in FHP. Our findings open novel strategies for the diagnosis and treatment of IPF and FHP.

10.
Front Cell Dev Biol ; 11: 1254904, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849737

RESUMEN

SSc-ILD (scleroderma associated interstitial lung disease) is a complex rheumatic disease characterized in part by immune dysregulation leading to the progressive fibrotic replacement of normal lung architecture. Because improved treatment options are sorely needed, additional study of the fibroproliferative mechanisms mediating this disease has the potential to accelerate development of novel therapies. The contribution of innate immunity is an emerging area of investigation in SSc-ILD as recent work has demonstrated the mechanistic and clinical significance of the NLRP3 inflammasome and its associated cytokines of TNFα (tumor necrosis factor alpha), IL-1ß (interleukin-1 beta), and IL-18 in this disease. In this review, we will highlight novel pathophysiologic insights afforded by these studies and the potential of leveraging this complex biology for clinical benefit.

11.
J Exp Med ; 220(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37773045

RESUMEN

Central B cell tolerance is believed to be regulated by B cell receptor signaling induced by the recognition of self-antigens in immature B cells. Using humanized mice with defective MyD88, TLR7, or TLR9 expression, we demonstrate that TLR9/MYD88 are required for central B cell tolerance and the removal of developing autoreactive clones. We also show that CXCL4, a chemokine involved in systemic sclerosis (SSc), abrogates TLR9 function in B cells by sequestering TLR9 ligands away from the endosomal compartments where this receptor resides. The in vivo production of CXCL4 thereby impedes both TLR9 responses in B cells and the establishment of central B cell tolerance. We conclude that TLR9 plays an essential early tolerogenic function required for the establishment of central B cell tolerance and that correcting defective TLR9 function in B cells from SSc patients may represent a novel therapeutic strategy to restore B cell tolerance.


Asunto(s)
Factor Plaquetario 4 , Esclerodermia Sistémica , Receptor Toll-Like 9 , Animales , Humanos , Ratones , Linfocitos B , Ligandos , Factor 88 de Diferenciación Mieloide/metabolismo , Factor Plaquetario 4/metabolismo , Esclerodermia Sistémica/metabolismo , Receptor Toll-Like 7 , Receptor Toll-Like 9/metabolismo
13.
medRxiv ; 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37163015

RESUMEN

Rationale: Changes in peripheral blood cell populations have been observed but not detailed at single-cell resolution in idiopathic pulmonary fibrosis (IPF). Objectives: To provide an atlas of the changes in the peripheral immune system in stable and progressive IPF. Methods: Peripheral blood mononuclear cells (PBMCs) from IPF patients and controls were profiled using 10x Chromium 5' single-cell RNA sequencing (scRNA-seq). Flow cytometry was used for validation. Protein concentrations of Regulatory T-cells (Tregs) and Monocytes chemoattractants were measured in plasma and lung homogenates from patients and controls. Measurements and Main Results: Thirty-eight PBMC samples from 25 patients with IPF and 13 matched controls yielded 149,564 cells that segregated into 23 subpopulations, corresponding to all expected peripheral blood cell populations. Classical monocytes were increased in progressive and stable IPF compared to controls (32.1%, 25.2%, 17.9%, respectively, p<0.05). Total lymphocytes were decreased in IPF vs controls, and in progressive vs stable IPF (52.6% vs 62.6%, p=0.035). Tregs were increased in progressive IPF (1.8% vs 1.1%, p=0.007), and were associated with decreased survival (P=0.009 in Kaplan-Meier analysis). Flow cytometry analysis confirmed this finding in an independent cohort of IPF patients. Tregs were also increased in two cohorts of lung scRNA-seq. CCL22 and CCL18, ligands for CCR4 and CCR8 Treg chemotaxis receptors, were increased in IPF. Conclusions: The single-cell atlas of the peripheral immune system in IPF, reveals an outcome-predictive increase in classical monocytes and Tregs, as well as evidence for a lung-blood immune recruitment axis involving CCL7 (for classical monocytes) and CCL18/CCL22 (for Tregs).

15.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L639-L651, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36648147

RESUMEN

Idiopathic pulmonary fibrosis is increasingly associated with nerve-driven processes and endogenous innate immune ligands such as mitochondrial DNA (mtDNA). Interestingly, a connection between these entities has not been explored. Here, we report that noradrenaline (NA) derived from the lung's adrenergic nerve supply drives α-smooth muscle actin (αSMA)-expressing fibroblast accumulation via mechanisms involving α1 adrenoreceptors and mtDNA. Using the bleomycin model, we compared ablation of the lung's adrenergic nerve supply with surgical adrenal resection and found that NA derived from local but not adrenal sources contributes to experimentally induced lung fibrosis and the emergence of an αSMA+ve fibroblast population expressing adrenoreceptor α-1D (ADRA1D). Therapeutic delivery of the α1 adrenoreceptor antagonist terazosin reversed these changes and suppressed extracellular mtDNA accumulation. Cultured normal human lung fibroblasts displayed α1 adrenoreceptors and in response to costimulation with TGFß1 and NA adopted ACTA2 expression and extracellular mtDNA release. These findings were opposed by terazosin. Evaluation of a previously studied IPF cohort revealed that patients prescribed α1 adrenoreceptor antagonists for nonpulmonary indications demonstrated improved survival and reduced concentrations of plasma mtDNA. Our observations link nerve-derived NA, α1 adrenoreceptors, extracellular mtDNA, and lung fibrogenesis in mouse models, cultured cells, and humans with IPF. Further study of this neuroinnate connection may yield new avenues for investigation in the clinical and basic science realms.


Asunto(s)
ADN Mitocondrial , Fibrosis Pulmonar Idiopática , Ratones , Animales , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Transducción de Señal , Fibroblastos/metabolismo , Bleomicina/farmacología , Adrenérgicos/metabolismo , Adrenérgicos/farmacología
16.
JCI Insight ; 8(4)2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36626225

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease. Recent findings have shown a marked metabolic reprogramming associated with changes in mitochondrial homeostasis and autophagy during pulmonary fibrosis. The microRNA-33 (miR-33) family of microRNAs (miRNAs) encoded within the introns of sterol regulatory element binding protein (SREBP) genes are master regulators of sterol and fatty acid (FA) metabolism. miR-33 controls macrophage immunometabolic response and enhances mitochondrial biogenesis, FA oxidation, and cholesterol efflux. Here, we show that miR-33 levels are increased in bronchoalveolar lavage (BAL) cells isolated from patients with IPF compared with healthy controls. We demonstrate that specific genetic ablation of miR-33 in macrophages protects against bleomycin-induced pulmonary fibrosis. The absence of miR-33 in macrophages improves mitochondrial homeostasis and increases autophagy while decreasing inflammatory response after bleomycin injury. Notably, pharmacological inhibition of miR-33 in macrophages via administration of anti-miR-33 peptide nucleic acids (PNA-33) attenuates fibrosis in different in vivo and ex vivo mice and human models of pulmonary fibrosis. These studies elucidate a major role of miR-33 in macrophages in the regulation of pulmonary fibrosis and uncover a potentially novel therapeutic approach to treat this disease.


Asunto(s)
Autofagia , Fibrosis Pulmonar Idiopática , Macrófagos , MicroARNs , Animales , Humanos , Ratones , Autofagia/genética , Bleomicina/efectos adversos , Homeostasis , Fibrosis Pulmonar Idiopática/metabolismo , Macrófagos/metabolismo , MicroARNs/genética , Mitocondrias/metabolismo
17.
Curr Treatm Opt Rheumatol ; 9(4): 204-220, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38230363

RESUMEN

Purpose of the review: Systemic sclerosis (SSc) is a condition of dermal and visceral scar formation characterized by immune dysregulation and inflammatory fibrosis. Approximately 90% of SSc patients develop interstitial lung disease (ILD), and it is the leading cause of morbidity and mortality. Further understanding of immune-mediated fibroproliferative mechanisms has the potential to catalyze novel treatment approaches in this difficult to treat disease. Recent findings: Recent advances have demonstrated the critical role of aberrant innate immune activation mediated by mitochondrial DNA (mtDNA) through interactions with toll-like receptor 9 (TLR9) and cytosolic cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS). Summary: In this review, we will discuss how the nature of the mtDNA, whether oxidized or mutated, and its mechanism of release, either intracellularly or extracellularly, can amplify fibrogenesis by activating TLR9 and cGAS, and the novel insights gained by interrogating these signaling pathways. Because the scope of this review is intended to generate hypotheses for future research, we conclude our discussion with several important unanswered questions.

18.
Respir Med ; 200: 106923, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35932543

RESUMEN

INTRODUCTION: Sarcoidosis is a granulomatous disorder thought to be caused by exposures in genetically susceptible individuals. This study investigated whether specific exposures were associated with different sarcoidosis phenotypes. METHODS: Extensive demographic, occupational and environmental exposure data was analyzed from subjects enrolled in the NHLBI Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study. RESULTS: In patients with sarcoidosis, radiation exposure was significantly associated with an increased risk of cardiac sarcoidosis versus non-cardiac sarcoidosis. No exposures were significantly associated with pulmonary only disease versus extrapulmonary disease with or without pulmonary involvement, Scadding Stage II/III/IV versus Scadding Stage 0/I, acute or remitting disease versus non-acute or non-remitting disease, nor chronic versus non-chronic disease. Although not reaching statistically significance after adjustment for multiple comparisons, there were a number of exposures associated with specific disease phenotypes, including exposures where relationships to sarcoidosis have previously been described such as rural exposures and pesticide exposures. CONCLUSIONS: Radiation exposure may be a risk factor for cardiac sarcoidosis. Other exposures may also be associated with specific phenotypes and should be further explored. The study was limited by small groups of exposed subjects for individual exposures and multiple comparisons. The development of novel and innovative exposure assessment tools is needed.


Asunto(s)
Enfermedades Pulmonares , Exposición Profesional , Sarcoidosis , Deficiencia de alfa 1-Antitripsina , Exposición a Riesgos Ambientales/efectos adversos , Genómica , Humanos , Enfermedades Pulmonares/complicaciones , Exposición Profesional/efectos adversos , Sarcoidosis/etiología , Sarcoidosis/genética , Deficiencia de alfa 1-Antitripsina/complicaciones , Deficiencia de alfa 1-Antitripsina/epidemiología , Deficiencia de alfa 1-Antitripsina/genética
19.
Nat Commun ; 13(1): 3140, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668129

RESUMEN

Sarcoidosis is an idiopathic inflammatory disorder that is commonly treated with glucocorticoids. An imprecise understanding of the immunologic changes underlying sarcoidosis has limited therapeutic progress. Here in this open-label trial (NCT03910543), 10 patients with cutaneous sarcoidosis are treated with tofacitinib, a Janus kinase inhibitor. The primary outcome is the change in the cutaneous sarcoidosis activity and morphology instrument (CSAMI) activity score after 6 months of treatment. Secondary outcomes included change in internal organ involvement, molecular parameters, and safety. All patients experience improvement in their skin with 6 patients showing a complete response. Improvement in internal organ involvement is also observed. CD4+ T cell-derived IFN-γ is identified as a central cytokine mediator of macrophage activation in sarcoidosis. Additional type 1 cytokines produced by distinct cell types, including IL-6, IL-12, IL-15 and GM-CSF, also associate with pathogenesis. Suppression of the activity of these cytokines, especially IFN-γ, correlates with clinical improvement. Our results thus show that tofacitinib treatment is associated with improved sarcoidosis symptoms, and predominantly acts by inhibiting type 1 immunity.


Asunto(s)
Pirimidinas , Sarcoidosis , Citocinas/metabolismo , Humanos , Piperidinas/farmacología , Piperidinas/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Sarcoidosis/tratamiento farmacológico , Sarcoidosis/patología
20.
Am J Physiol Lung Cell Mol Physiol ; 322(4): L518-L525, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35196896

RESUMEN

Sarcoidosis is a chronic granulomatous disease of unknown etiology that primarily affects the lungs. The development of stage IV or fibrotic lung disease accounts for a significant proportion of the morbidity and mortality attributable to sarcoidosis. Further investigation into the active mechanisms of disease pathogenesis and fibrogenesis might illuminate fundamental mediators of injury and repair while providing new opportunities for clinical intervention. However, progress in sarcoidosis research has been hampered by the heterogeneity of clinical phenotypes and the lack of a consensus modeling system. Recently, reverse translational research, wherein observations made at the patient level catalyze hypothesis-driven research at the laboratory bench, has generated new discoveries regarding the immunopathogenic mechanisms of pulmonary granuloma formation, fibrogenesis, and disease model development. The purpose of this review is to highlight the promise and possibility of these novel investigative efforts.


Asunto(s)
Fibrosis Pulmonar , Sarcoidosis , Granuloma/patología , Humanos , Pulmón/patología , Fibrosis Pulmonar/patología , Sarcoidosis/patología , Investigación Biomédica Traslacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...