Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
HardwareX ; 12: e00369, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36275398

RESUMEN

A low-cost open-source autonomous unmanned surface vehicle (USV) named "iDroneboat" is developed for real-time monitoring and visualization of water quality. The iDroneboat equipped with Internet of Things (IoT) sensors transmits real-time water quality data, including dissolved oxygen (DO), electronical conductivity (EC), pH, and water temperature (WT) to the cloud for data sharing through Long-term Evolution (LTE) communication protocols. Since material and supplies needed are readily accessible from online marketplaces or local hardware stores, the iDroneboat is easily replicable for local water quality studies and citizen-science activities. The iDroneboat appears to be a promising tool to advance environmental research activities, especially for impaired waterways (e.g., lakes, rivers, and reservoirs). The preliminary result shows that the proposed low-cost platform, iDroneboat, effectively displays water quality components in real-time to the cloud web services (e.g., ThingSpeak), ultimately contributing to citizen science activities and environmental stewardship in water research ecosystems.

3.
J Insect Sci ; 22(4)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35793373

RESUMEN

Unmanned aerial vehicles (UAVs, e.g., drones) are a common tool for many civil applications, including precision agriculture, transportation, delivery services, rescue missions, law enforcement, and more. Remote sensing technologies used in conjunction with drones are a dominant application in precision agriculture. Multispectral instrumentation attached to UAVs allows the user to observe multiple parameters, including the normalized difference vegetation index which can represent crop stresses induced by various factors (e.g., drought, insect outbreak, nutrient loss, and other diseases). However, little research has been done to apply drones to accomplish a mission-oriented actionable task in agriculture, such as insect sampling. We propose a low-cost, open source-based live insect scouting drone named 'iDrone Bee' to benefit the integrated pest management (IPM) community by minimizing time and efforts of human interventions while collecting live insects in agricultural fields. Herein we present instruction and operation procedures to build and operate an iDrone Bee for insect scouting in an agricultural ecosystem and validate the system in an alfalfa seed field. The findings of this investigation demonstrate that a drone-based insect scouting method may be a valuable tool to benefit the IPM community.


Asunto(s)
Agricultura , Insectos , Control de Plagas , Dispositivos Aéreos No Tripulados , Agricultura/instrumentación , Animales , Ecosistema , Control de Plagas/instrumentación
4.
HardwareX ; 11: e00277, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35509896

RESUMEN

Urbanization, land use change, and agricultural activities continue to affect water quality standards at the urban-rural interface, such as the Boise River System located in Idaho, USA. This project demonstrates how the off-the-shelf unmanned aircraft system (UAS, also known as drone) equipped with other necessary hardware attachments can be used to monitor real-time water quality components, including pH, water temperature, electric conductivity (EC), and dissolved oxygen at open waterbodies. The proposed UAS-based hardware platform for water quality studies (UASWQP) appears a promising tool to advance environmental research activities, especially for impaired waterways (e.g., rivers, lakes, and reservoirs). The preliminary result shows that the proposed UASWQP effectively displays water quality components in real-time to the ThingSpeak Cloud web services, while an adequate water sample was also collected easily for further analysis at laboratory facilities, when needed. It is anticipated that UASWQP will be a useful tool to promote environmental stewardship by contributing to the water research communities in years to come.

5.
Nano Res ; 14(9): 3240-3247, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34394850

RESUMEN

Thin-film polymer microelectrode arrays (MEAs) facilitate the high-resolution neural recording with its superior mechanical compliance. However, the densely packed electrodes and interconnects along with the ultra-thin polymeric encapsulation/substrate layers give rise to non-negligible crosstalk, which could result in severe interference in the neural signal recording. Due to the lack of standardized characterization or modeling of crosstalk in neural electrode arrays, to date, crosstalk in polymer MEAs remains poorly understood. In this work, the crosstalk between two adjacent polymer microelectrodes is measured experimentally and modeled using equivalent circuits. Importantly, this study demonstrated a two-well measuring platform and systematically characterized the crosstalk in polymer microelectrodes with true isolation of the victim channel and precise control of its grounding condition. A simple, unified equation from detailed circuit modeling was proposed to calculate the crosstalk in different environments. Finite element analysis (FEA) analysis was conducted further to explore the crosstalk in more aggressively scaled polymer electrode threads. In addition to standardizing neural electrode array crosstalk characterization, this study not only reveals the dependence of the crosstalk in polymer MEAs on a variety of key device parameters but also provides general guidelines for the design of thin polymer MEAs for high-quality neural signal recording.

6.
Nanomaterials (Basel) ; 11(6)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204218

RESUMEN

Photodetectors and display backplane transistors based on molybdenum disulfide (MoS2) have been regarded as promising topics. However, most studies have focused on the improvement in the performances of the MoS2 photodetector itself or emerging applications. In this study, to suggest a better insight into the photodetector performances of MoS2 thin film transistors (TFTs), as photosensors for possible integrated system, we performed a comparative study on the photoresponse of MoS2 and hydrogenated amorphous silicon (a-Si:H) TFTs. As a result, in the various wavelengths and optical power ranges, MoS2 TFTs exhibit 2~4 orders larger photo responsivities and detectivities. The overall quantitative comparison of photoresponse in single device and inverters confirms a much better performance by the MoS2 photodetectors. Furthermore, as a strategy to improve the field effect mobility and photoresponse of the MoS2 TFTs, molecular doping via poly-L-lysine (PLL) treatment was applied to the MoS2 TFTs. Transfer and output characteristics of the MoS2 TFTs clearly show improved photocurrent generation under a wide range of illuminations (740~365 nm). These results provide useful insights for considering MoS2 as a next-generation photodetector in flat panel displays and makes it more attractive due to the fact of its potential as a high-performance photodetector enabled by a novel doping technique.

7.
Small ; 15(7): e1803852, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30637933

RESUMEN

In recent past, for next-generation device opportunities such as sub-10 nm channel field-effect transistors (FETs), tunneling FETs, and high-end display backplanes, tremendous research on multilayered molybdenum disulfide (MoS2 ) among transition metal dichalcogenides has been actively performed. However, nonavailability on a matured threshold voltage control scheme, like a substitutional doping in Si technology, has been plagued for the prosperity of 2D materials in electronics. Herein, an adjustment scheme for threshold voltage of MoS2 FETs by using self-assembled monolayer treatment via octadecyltrichlorosilane is proposed and demonstrated to show MoS2 FETs in an enhancement mode with preservation of electrical parameters such as field-effect mobility, subthreshold swing, and current on-off ratio. Furthermore, the mechanisms for threshold voltage adjustment are systematically studied by using atomic force microscopy, Raman, temperature-dependent electrical characterization, etc. For validation of effects of threshold voltage engineering on MoS2 FETs, full swing inverters, comprising enhancement mode drivers and depletion mode loads are perfectly demonstrated with a maximum gain of 18.2 and a noise margin of ≈45% of 1/2 VDD . More impressively, quantum dot light-emitting diodes, driven by enhancement mode MoS2 FETs, stably demonstrate 120 cd m-2 at the gate-to-source voltage of 5 V, exhibiting promising opportunities for future display application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA