Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Tissue Eng Regen Med ; 20(2): 271-284, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36462090

RESUMEN

BACKGROUND: To achieve optimal bone marrow engraftment during bone marrow transplantation, migration of donor bone marrow cells (BMCs) toward the recipient's bone marrow is critical. Despite the enhanced engraftment of BMCs by co-administration of mesenchymal stem cells (MSCs), the efficiency can be variable depending on MSC donor. The purpose of this study is to examine the functional heterogeneity of tonsil-derived MSCs (TMSCs) and to identify a marker to evaluate efficacy for the enhancement of BMC migration. METHODS: To examine the donor-to-donor variation of TMSCs in potentiating BMC migration, we isolated TMSCs from 25 independent donors. Transcriptome of TMSCs and proteome of conditioned medium derived from TMSC were analyzed. RESULTS: Enhanced BMC migration by conditioned medium derived from TMSCs was variable depending on TMSC donor. The TMSCs derived from 25 donors showed distinct expression profiles compared with other cells, including fibroblasts, adipose-derived MSCs and bone marrow-derived MSCs. TMSCs were distributed in two categories: high- and low-efficacy groups for potentiating BMC migration. Transcriptome analysis of TMSCs and proteome profiles of conditioned medium derived from TMSCs revealed higher expression and secretion of matrix metalloproteinase (MMP) 1 in the high-efficacy group. MMP1 knockdown in TMSCs abrogated the supportive efficacy of conditioned medium derived from TMSC cultures in BMC migration. CONCLUSION: These data suggest that secreted MMP1 can be used as a marker to evaluate the efficacy of TMSCs in enhancing BMC migration. Furthermore, the strategy of analyzing transcriptomes and proteomes of the MSCs may be useful to set the standard for donor variation.


Asunto(s)
Células Madre Mesenquimatosas , Tonsila Palatina , Células de la Médula Ósea , Medios de Cultivo Condicionados/farmacología , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteoma/metabolismo , Humanos
2.
Cancer Res Treat ; 55(1): 279-290, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35952715

RESUMEN

PURPOSE: Renal tumors account for approximately 7% of all childhood cancers. These include Wilms tumor (WT), clear cell sarcoma of the kidney (CCSK), malignant rhabdoid tumor of the kidney (MRTK), renal cell carcinoma (RCC), congenital mesoblastic nephroma (CMN) and other rare tumors. We investigated the epidemiology of pediatric renal tumors in Korea. MATERIALS AND METHODS: From January 2001 to December 2015, data of pediatric patients (0-18 years) newly-diagnosed with renal tumors at 26 hospitals were retrospectively analyzed. RESULTS: Among 439 patients (male, 240), the most common tumor was WT (n=342, 77.9%), followed by RCC (n=36, 8.2%), CCSK (n=24, 5.5%), MRTK (n=16, 3.6%), CMN (n=12, 2.7%), and others (n=9, 2.1%). Median age at diagnosis was 27.1 months (range 0-225.5) and median follow-up duration was 88.5 months (range 0-211.6). Overall, 32 patients died, of whom 17, 11, 1, and 3 died of relapse, progressive disease, second malignant neoplasm, and treatment-related mortality. Five-year overall survival and event free survival were 97.2% and 84.8% in WT, 90.6% and 82.1% in RCC, 81.1% and 63.6% in CCSK, 60.3% and 56.2% in MRTK, and 100% and 91.7% in CMN, respectively (p < 0.001). CONCLUSION: The pediatric renal tumor types in Korea are similar to those previously reported in other countries. WT accounted for a large proportion and survival was excellent. Non-Wilms renal tumors included a variety of tumors and showed inferior outcome, especially MRTK. Further efforts are necessary to optimize the treatment and analyze the genetic characteristics of pediatric renal tumors in Korea.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Nefroma Mesoblástico , Tumor Rabdoide , Sarcoma , Tumor de Wilms , Niño , Humanos , Masculino , Carcinoma de Células Renales/epidemiología , Estudios Retrospectivos , Recurrencia Local de Neoplasia , Neoplasias Renales/terapia , Neoplasias Renales/tratamiento farmacológico , Nefroma Mesoblástico/congénito , Nefroma Mesoblástico/metabolismo , Nefroma Mesoblástico/patología , Tumor Rabdoide/patología , República de Corea/epidemiología
3.
PLoS One ; 17(6): e0266857, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35648740

RESUMEN

Obesity, which has become a major global health problem, involves a constitutive increase in adipocyte differentiation signaling. Previous studies show that mesenchymal stem cells (MSCs) induce weight loss and glycemic control. However, the mechanisms by which MSCs regulate adipocyte differentiation are not yet known. In this study, we investigated the effects of conditioned medium obtained from human tonsil-derived MSCs (T-MSC CM) on adipocyte differentiation. We found that T-MSC CM attenuated adipocyte differentiation from early stages via inhibiting glucocorticoid signaling. T-MSC CM also increased the phosphorylation of p38 mitogen-activated protein kinase and glucocorticoid receptors and decreased the subsequent nucleus translocation of glucocorticoid receptors. Chronic treatment of mice with synthetic glucocorticoids induced visceral and bone marrow adipose tissue expansion, but these effects were not observed in mice injected with T-MSC CM. Furthermore, T-MSC CM injection protected against reductions in blood platelet counts induced by chronic glucocorticoid treatment, and enhanced megakaryocyte differentiation was also observed. Collectively, these results demonstrate that T-MSC CM exerts inhibitory effects on adipocyte differentiation by regulating glucocorticoid signal transduction. These findings suggest that the therapeutic application of T-MSC CM could reduce obesity by preventing adipose tissue expansion.


Asunto(s)
Glucocorticoides , Células Madre Mesenquimatosas , Adipocitos/metabolismo , Animales , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Humanos , Factores Inmunológicos/farmacología , Ratones , Obesidad/metabolismo , Tonsila Palatina , Receptores de Glucocorticoides/metabolismo
4.
Biology (Basel) ; 11(2)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35205121

RESUMEN

Reactive oxygen species (ROS) generated by neutrophils provide a frontline defence against invading pathogens. We investigated the supportive effect of tonsil-derived mesenchymal stem cells (TMSCs) on ROS generation from neutrophils using promyelocytic HL-60 cells. Methods: Differentiated HL-60 (dHL-60) cells were cocultured with TMSCs isolated from 25 independent donors, and ROS generation in dHL-60 cells was measured using luminescence. RNA sequencing and real-time PCR were performed to identify the candidate genes of TMSCs involved in augmenting the oxidative burst of dHL-60 cells. Transcriptome analysis of TMSCs derived from 25 independent donors revealed high levels of procollagen C-endopeptidase enhancer 2 (PCOLCE2) in TMSCs, which were highly effective in potentiating ROS generation in dHL-60 cells. In addition, PCOLCE2 knockdown in TMSCs abrogated TMSC-induced enhancement of ROS production in dHL-60 cells, indicating that TMSCs increased the oxidative burst in dHL-60 cells via PCOLCE2. Furthermore, the direct addition of recombinant PCOLCE2 protein increased ROS production in dHL-60 cells. These results suggest that PCOLCE2 secreted by TMSCs may be used as a therapeutic candidate to enhance host defences by increasing neutrophil oxidative bursts. PCOLCE2 levels in TMSCs could be used as a marker to select TMSCs exhibiting high efficacy for enhancing neutrophil oxidative bursts.

5.
Tissue Eng Regen Med ; 19(1): 131-139, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35013919

RESUMEN

BACKGROUND: Therapeutic strategies that can promote platelet production are in demand to enhance clinical outcomes of bone marrow transplantation (BMT). Our research group has studied human tonsil-derived mesenchymal stem cells (T-MSCs) and their effectiveness in promoting bone marrow (BM) engraftment. Here, we analyzed the effects of T-MSCs on platelet production and hemostasis. METHODS: Donor BM cells (BMCs) were isolated from C57BL/6 mice and transplanted with or without T-MSCs to BALB/c recipient mice. Mice were sacrificed and blood cells were counted using an Auto Hematology Analyzer. Femur sections were stained with CD41 antibody to analyze megakaryocytes in the BM. Growth factor secretion from MSCs was analyzed using the Quantibody Array. Effects of T-MSC conditioned medium (CM) on megakaryopoiesis were investigated using the MegaCult assay. In a mouse model of BMT, T-MSC CM was injected with or without anti-placental growth factor (α-PlGF) blocking antibody, and blood cell numbers and coagulation were analyzed. RESULTS: T-MSC co-transplantation increased percent survival of BMT mice. Platelet numbers were significantly lower in the BMC-only group, whereas T-MSC co-transplantation restored circulating platelets to levels similar to those of the control group. Significantly reduced numbers of CD41 + megakaryocytes in Bu-Cy and BMC groups were increased by T-MSC co-transplantation. PlGF secretion from T-MSCs were detected and enhanced megakaryopoiesis, platelet production, and coagulation by T-MCS CM were disrupted in the presence of the α-PlGF blocking antibody. CONCLUSION: We demonstrated the effectiveness of T-MSC co-transplantation in promoting platelet production and coagulation after BMT. These findings highlight the potential therapeutic relevance of T-MSCs for preventing thrombocytopenia after BMT.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Células de la Médula Ósea , Trasplante de Médula Ósea , Ratones , Ratones Endogámicos C57BL
6.
Tissue Eng Regen Med ; 19(1): 117-129, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34792754

RESUMEN

BACKGROUND: Mast cells are immune sentinels in the skin that respond to a wide range of pathological and environmental stimuli; they owe their function to the expression of Toll-like receptors (TLRs). We previously found that tonsil-derived mesenchymal stem cells (T-MSCs) were able to effectively attenuate TLR7-mediated skin inflammation in mice, which was accompanied by an increase in mast cell number. The present study investigated whether T-MSC extracellular vesicles, such as exosomes, are able to regulate mast cell activation in response to TLR7 stimulation. METHODS: The HMC-1 human mast cell line was treated with a TLR7 agonist in the presence or absence of T-MSC exosomes, and the levels of expressed inflammatory cytokines were assessed. Additionally, mice were repeatedly injected with a TLR7 agonist with or without interval treatments with T-MSC exosomes and assessed dermal distribution of mast cells and related immune cells. RESULTS: We showed that T-MSC exosomes containing microRNAs that target inflammatory cytokines significantly reduced the expression of inflammatory cytokines in TLR7 agonist-treated HMC-1 cells. In addition, T-MSC exosomes inhibited the increase in the number of both dermal mast cells and CD14-positive cells in TLR7 agonist-treated mice. CONCLUSION: Our data suggest that T-MSC exosomes have regulatory effects on mast cell activation under inflammatory conditions, including TLR7 stimulation.


Asunto(s)
Exosomas , Glicoproteínas de Membrana/inmunología , Células Madre Mesenquimatosas , MicroARNs , Receptor Toll-Like 7/inmunología , Animales , Exosomas/metabolismo , Mastocitos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Receptor Toll-Like 7/metabolismo
7.
Cells ; 10(8)2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34440938

RESUMEN

Skeletal muscle mass is decreased under a wide range of pathologic conditions. In particular, chemotherapy is well known for inducing muscle loss and atrophy. Previous studies using tonsil-derived mesenchymal stem cells (T-MSCs) or a T-MSC-conditioned medium showed effective recovery of total body weight in the chemotherapy-preconditioned bone marrow transplantation mouse model. This study investigated whether extracellular vesicles of T-MSCs, such as exosomes, are a key player in the recovery of body weight and skeletal muscle mass in chemotherapy-treated mice. T-MSC exosomes transplantation significantly decreased loss of total body weight and muscle mass in the busulfan-cyclophosphamide conditioning regimen in BALB/c recipient mice containing elevated serum activin A. Additionally, T-MSC exosomes rescued impaired C2C12 cell differentiation in the presence of activin A in vitro. We found that T-MSC exosomes possess abundant miR-145-5p, which targets activin A receptors, ACVR2A, and ACVR1B. Indeed, T-MSC exosomes rescue muscle atrophy both in vivo and in vitro via miR-145-5p dependent manner. These results suggest that T-MSC exosomes have therapeutic potential to maintain or improve skeletal muscle mass in various activin A elevated pathologic conditions.


Asunto(s)
Receptores de Activinas/metabolismo , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
8.
Stem Cell Res Ther ; 12(1): 329, 2021 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-34090520

RESUMEN

BACKGROUND: Co-transplantation of bone marrow cells (BMCs) and mesenchymal stem cells (MSCs) is used as a strategy to improve the outcomes of bone marrow transplantation. Tonsil-derived MSCs (TMSCs) are a promising source of MSCs for co-transplantation. Previous studies have shown that TMSCs or conditioned media from TMSCs (TMSC-CM) enhance BMC engraftment. However, the factors in TMSCs that promote better engraftment have not yet been identified. METHODS: Mice were subjected to a myeloablative regimen of busulfan and cyclophosphamide, and the mRNA expression in the bone marrow was analyzed using an extracellular matrix (ECM) and adhesion molecule-targeted polymerase chain reaction (PCR) array. Nano-liquid chromatography with tandem mass spectrometry, real-time quantitative PCR, western blots, and enzyme-linked immunosorbent assays were used to compare the expression levels of metalloproteinase 3 (MMP3) in MSCs derived from various tissues, including the tonsils, bone marrow, adipose tissue, and umbilical cord. Recipient mice were conditioned with busulfan and cyclophosphamide, and BMCs, either as a sole population or with control or MMP3-knockdown TMSCs, were co-transplanted into these mice. The effects of TMSC-expressed MMP3 were investigated. Additionally, Enzchek collagenase and Transwell migration assays were used to confirm that the collagenase activity of TMSC-expressed MMP3 enhanced BMC migration. RESULTS: Mice subjected to the myeloablative regimen exhibited increased mRNA expression of collagen type IV alpha 1/2 (Col4a1 and Col4a2). Among the various extracellular matrix-modulating proteins secreted by TMSCs, MMP3 was expressed at higher levels in TMSCs than in other MSCs. Mice co-transplanted with BMCs and control TMSCs exhibited a higher survival rate, weight recovery, and bone marrow cellularity compared with mice co-transplanted with BMCs and MMP3-knockdown TMSCs. Control TMSC-CM possessed higher collagenase activity against collagen IV than MMP3-knockdown TMSC-CM. TMSC-CM also accelerated BMC migration by degrading collagen IV in vitro. CONCLUSIONS: Collectively, these results indicate that TMSCs enhance BMC engraftment by the secretion of MMP3 for the modulation of the bone marrow extracellular matrix.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Animales , Médula Ósea , Células de la Médula Ósea , Colágeno Tipo IV , Ratones , Tonsila Palatina
10.
Tissue Eng Regen Med ; 18(2): 253-264, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33113109

RESUMEN

BACKGROUND: The advantages of tonsil-derived mesenchymal stem cells (TMSCs) over other mesenchymal stem cells (MSCs) include higher proliferation rates, various differentiation potentials, efficient immune-modulating capacity, and ease of obtainment. Specifically, TMSCs have been shown to differentiate into the endodermal lineage. Estrogen deficiency is a major cause of postmenopausal osteoporosis and is associated with higher incidences of ischemic heart disease and cerebrovascular attacks during the postmenopausal period. Therefore, stem cell-derived, estrogen-secreting cells might be used for estrogen deficiency. METHODS: Here, we developed a novel method that utilizes retinoic acid, insulin-like growth factor-1, basic fibroblast growth factor, and dexamethasone to evaluate the differentiating potential of TMSCs into estrogen-secreting cells. The efficacy of the novel differentiating method for generation of estrogen-secreting cells was also evaluated with bone marrow- and adipose tissue-derived MSCs. RESULTS: Incubating TMSCs in differentiating media induced the gene expression of cytochrome P450 19A1 (CYP19A1), which plays a key role in estrogen biosynthesis, and increased 17ß-estradiol secretion upon testosterone addition. Furthermore, CYP11A1, CYP17A1, and 3ß-hydroxysteroid dehydrogenase type-1 gene expression levels were significantly increased in TMSCs. In bone marrow-derived and adipose tissue-derived MSCs, this differentiation method also induced the gene expression of CYP19A1, but not CYP17A1, suggesting TMSCs are a superior source for estrogen secretion. CONCLUSION: These results imply that TMSCs can differentiate into functional estrogen-secreting cells, thus providing a novel, alternative cell therapy for estrogen deficiency.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Estrógenos , Células Madre Mesenquimatosas , Tonsila Palatina , Diferenciación Celular , Estrógenos/metabolismo , Tonsila Palatina/citología
11.
Int J Mol Med ; 46(3): 1166-1174, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32582998

RESUMEN

Bone marrow (BM) transplantation (BMT) represents a curative treatment for various hematological disorders. Prior to BMT, a large amount of the relevant anticancer drug needed to be administered to eliminate cancer cells. However, during this pre­BMT cytotoxic conditioning regimen, hematopoietic stem cells in the BM and thymic epithelial cells were also destroyed. The T cell receptor (TCR) recognizes diverse pathogen, tumor and environmental antigens, and confers immunological memory and self­tolerance. Delayed thymus reconstitution following pre­BMT cytotoxic conditioning impedes de novo thymopoiesis and limits T cell­mediated immunity. Several cytokines, such as RANK ligand, interleukin (IL)­7, IL­22 and stem cell factor, were recently reported to improve thymopoiesis and immune function following BMT. In the present study, it was found that the co­transplantation of tonsil­derived mesenchymal stromal cells (T­MSCs) with BM­derived cells (BMCs) accelerated the recovery of involuted thymuses in mice following partial pre­BMT conditioning with busulfan­cyclophosphamide treatment, possibly by inducing FMS­like tyrosine kinase 3 ligand (FLT3L) and fibroblast growth factor 7 (FGF7) production in T­MSCs. The co­transplantation of T­MSCs with BMCs also replenished the CD3+ cell population by inhibiting thymocyte apoptosis following pre­BMT cytotoxic conditioning. Furthermore, T­MSC co­transplantation improved the recovery of the TCR repertoire and led to increased thymus­generated T cell diversity.


Asunto(s)
Trasplante de Médula Ósea/métodos , Células Madre Mesenquimatosas/citología , Tonsila Palatina/citología , Linfocitos T/citología , Timo/citología , Animales , Complejo CD3 , Femenino , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Tonsila Palatina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/metabolismo
12.
Cells ; 9(1)2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952360

RESUMEN

Cotransplantation of mesenchymal stem cells (MSCs) with hematopoietic stem cells (HSCs) has been widely reported to promote HSC engraftment and enhance marrow stromal regeneration. The present study aimed to define whether MSC conditioned medium could recapitulate the effects of MSC cotransplantation. Mouse bone marrow (BM) was partially ablated by the administration of a busulfan and cyclophosphamide (Bu-Cy)-conditioning regimen in BALB/c recipient mice. BM cells (BMCs) isolated from C57BL/6 mice were transplanted via tail vein with or without tonsil-derived MSC conditioned medium (T-MSC CM). Histological analysis of femurs showed increased BM cellularity when T-MSC CM or recombinant human pleiotrophin (rhPTN), a cytokine readily secreted from T-MSCs with a function in hematopoiesis, was injected with BMCs. Microstructural impairment in mesenteric and BM arteriole endothelial cells (ECs) were observed after treatment with Bu-Cy-conditioning regimen; however, T-MSC CM or rhPTN treatment restored the defects. These effects by T-MSC CM were disrupted in the presence of an anti-PTN antibody, indicating that PTN is a key mediator of EC restoration and enhanced BM engraftment. In conclusion, T-MSC CM administration enhances BM engraftment, in part by restoring vasculature via PTN production. These findings highlight the potential therapeutic relevance of T-MSC CM for increasing HSC transplantation efficacy.


Asunto(s)
Trasplante de Médula Ósea , Proteínas Portadoras/farmacología , Medios de Cultivo Condicionados/farmacología , Citocinas/farmacología , Células Endoteliales de la Vena Umbilical Humana/citología , Células Madre Mesenquimatosas/citología , Tonsila Palatina/citología , Animales , Supervivencia Celular/efectos de los fármacos , Endotelio/efectos de los fármacos , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Arterias Mesentéricas/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
13.
Stem Cells Int ; 2019: 8503148, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31582989

RESUMEN

The application of mesenchymal stem cells (MSCs) for treating bone-related diseases shows promising outcomes in preclinical studies. However, cells that are isolated and defined as MSCs comprise a heterogeneous population of progenitors. This heterogeneity can produce variations in the performance of MSCs, especially in applications that require differentiation potential in vivo, such as the treatment of osteoporosis. Here, we aimed to identify genetic markers in tonsil-derived MSCs (T-MSCs) that can predict osteogenic potential. Using a single-cell cloning method, we isolated and established several lines of nondifferentiating (ND) or osteoblast-prone (OP) clones. Next, we performed transcriptome sequencing of three ND and three OP clones that maintained the characteristics of MSCs and determined the top six genes that were upregulated in OP clones. Upregulation of WNT16 and DCLK1 expression was confirmed by real-time quantitative PCR, but only WNT16 expression was correlated with the osteogenic differentiation of T-MSCs from 10 different donors. Collectively, our findings suggest that WNT16 is a putative genetic marker that predicts the osteogenic potential of T-MSCs. Thus, examination of WNT16 expression as a selection criterion prior to the clinical application of MSCs may enhance the therapeutic efficacy of stem cell therapy for bone-related complications, including osteoporosis.

14.
World J Stem Cells ; 11(8): 506-518, 2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31523370

RESUMEN

Located near the oropharynx, the tonsils are the primary mucosal immune organ. Tonsil tissue is a promising alternative source for the high-yield isolation of adult stem cells, and recent studies have reported the identification and isolation of tonsil-derived stem cells (T-SCs) from waste surgical tissue following tonsillectomies in relatively young donors (i.e., under 10 years old). As such, T-SCs offer several advantages, including superior proliferation and a shorter doubling time compared to bone marrow-derived mesenchymal stem cells (MSCs). T-SCs also exhibit multi-lineage differentiation, including mesodermal, endodermal (e.g., hepatocytes and parathyroid-like cells), and even ectodermal cells (e.g., Schwann cells). To this end, numbers of researchers have evaluated the practical use of T-SCs as an alternative source of autologous or allogenic MSCs. In this review, we summarize the details of T-SC isolation and identification and provide an overview of their application in cell therapy and regenerative medicine.

15.
Stem Cells ; 37(10): 1252-1260, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31287931

RESUMEN

Since the discovery of stem cells and multipotency characteristics of mesenchymal stem cells (MSCs), there has been tremendous development in regenerative medicine. MSCs derived from bone marrow have been widely used in various research applications, yet there are limitations such as invasiveness of obtaining samples, low yield and proliferation rate, and questions regarding their practicality in clinical applications. Some have suggested that MSCs from other sources, specifically those derived from palatine tonsil tissues, that is, tonsil-derived MSCs (TMSCs), could be considered as a new potential therapeutic tool in regenerative medicine due to their superior proliferation rate and differentiation capabilities with low immunogenicity and ease of obtaining. Several studies have determined that TMSCs have differentiation potential not only into the mesodermal lineage but also into the endodermal as well as ectodermal lineages, expanding their potential usage and placing them as an appealing option to consider for future studies in regenerative medicine. In this review, the differentiation capacities of TMSCs and their therapeutic competencies from past studies are addressed. Stem Cells 2019;37:1252-1260.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Tonsila Palatina/metabolismo , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Humanos , Tonsila Palatina/citología
16.
Stem Cells Int ; 2019: 9071046, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949211

RESUMEN

[This corrects the article DOI: 10.1155/2015/106540.].

17.
Cells ; 8(4)2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31018536

RESUMEN

Type 2 diabetes mellitus (T2DM) is a prevalent chronic metabolic disorder accompanied by high blood glucose, insulin resistance, and relative insulin deficiency. Endoplasmic reticulum (ER) stress induced by high glucose and free fatty acids has been suggested as one of the main causes of ß-cell dysfunction and death in T2DM. Stem cell-derived insulin-secreting cells were recently suggested as a novel therapy for diabetes. In the present study, we demonstrate the therapeutic potential of tonsil-derived mesenchymal stem cells (TMSCs) to treat high-fat diet (HFD)-induced T2DM. To explore whether TMSC administration can alleviate T2DM, TMSCs were intraperitoneally injected in HFD-induced T2DM mice once every 2 weeks. TMSC injection markedly improved glucose tolerance and glucose-stimulated insulin secretion and prevented HFD-induced pancreatic ß-cell hypertrophy and cell death. In addition, TMSC injection relieved the ER-stress response and preserved gene expression related to glucose sensing and insulin secretion. Moreover, administration of TMSC-derived conditioned medium induced similar therapeutic outcomes, suggesting paracrine effects. Finally, proteomic analysis revealed high secretion of insulin-like growth factor-binding protein 5 by TMSCs, and its expression was critical for the protective effects of TMSCs against HFD-induced glucose intolerance and ER-stress response in pancreatic islets. TMSC administration can alleviate HFD-induced-T2DM via preserving pancreatic islets and their function. These results provide novel evidence of TMSCs as an ER-stress modulator that may be a novel, alternative cell therapy for T2DM.


Asunto(s)
Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/terapia , Células Madre Mesenquimatosas/metabolismo , Animales , Glucemia/análisis , Glucemia/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Glucosa/metabolismo , Intolerancia a la Glucosa/etiología , Humanos , Hiperglucemia/complicaciones , Insulina/genética , Resistencia a la Insulina , Secreción de Insulina , Células Secretoras de Insulina , Islotes Pancreáticos/metabolismo , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Endogámicos BALB C , Tonsila Palatina/metabolismo , Tonsila Palatina/fisiología
18.
Tissue Eng Regen Med ; 16(1): 51-58, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30815350

RESUMEN

BACKGROUND: The liver is an organ with remarkable regenerative capacity; however, once chronic fibrosis occurs, liver failure follows, with high mortality and morbidity rates. Continuous exposure to proinflammatory stimuli exaggerates the pathological process of liver failure; therefore, immune modulation is a potential strategy to treat liver fibrosis. Mesenchymal stem cells (MSCs) with tissue regenerative and immunomodulatory potential may support the development of therapeutics for liver fibrosis. METHODS: Here, we induced hepatic injury in mice by injecting carbon tetrachloride (CCl4) and investigated the therapeutic potential of conditioned medium from tonsil-derived MSCs (T-MSC CM). In parallel, we used recombinant human IL-1Ra, which, as we have previously shown, is secreted exclusively from T-MSCs and resolves the fibrogenic activation of myoblasts. Hepatic inflammation and fibrosis were determined by histological analyses using H&E and Picro-Sirius Red staining. RESULTS: The results demonstrated that T-MSC CM treatment significantly reduced inflammation as well as fibrosis in the CCl4-injured mouse liver. IL-1Ra injection showed effects similar to T-MSC CM treatment, suggesting that T-MSC CM may exert anti-inflammatory and anti-fibrotic effects via the endogenous production of IL-1Ra. The expression of genes involved in fibrosis was evaluated, and the results showed significant induction of alpha-1 type I collagen, transforming growth factor beta, and tissue inhibitor of metalloproteases 1 upon CCl4 injection, whereas treatment with T-MSC CM or IL-1Ra downregulated their expression. CONCLUSIONS: Taken together, these data support the therapeutic potential of T-MSC CM and/or IL-1Ra for the alleviation of liver fibrosis, as well as in treating diseases involving organ fibrosis.

19.
Acta Derm Venereol ; 99(6): 594-601, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30834454

RESUMEN

Sphingosine-1-phosphate (S1P) is a signalling sphingolipid metabolite that regulates important cell processes, including cell proliferation and apoptosis. Circulating S1P levels have been reported to be increased in patients with psoriasis relative to healthy patients. The aim of this study was to examine the potency of S1P inhibition using an imiquimod-induced psoriasis mouse model. Both topical ceramidase and sphingosine kinase 1/2 inhibition, which blocks S1P generation, alleviated imiquimod-induced skin lesions and reduced the serum interleukin 17-A levels induced by application of imiquimod. These treatments also normalized skin mRNA levels of genes associated with inflammation and keratinocyte differentiation. Inhibition of sphingosine kinase 2, but not sphingosine kinase 1, diminished levels of suppressor of cytokine signalling 1 and blocked T helper type 17 differentiation of naïve CD4+ T cells; imiquimod-induced psoriasis-like skin symptoms were also ameliorated. These results indicate the distinct effects of sphingosine kinase 1 and sphingosine kinase 2 inhibition on T helper type 17 generation and suggest molecules that inhibit S1P formation, including ceramidase and sphingosine kinase 2 inhibitors, as novel therapeutic candidates for psoriasis.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Inhibidores Enzimáticos/farmacología , Lisofosfolípidos/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Psoriasis/tratamiento farmacológico , Esfingosina/análogos & derivados , Administración Tópica , Animales , Diferenciación Celular/efectos de los fármacos , Ceramidasas/antagonistas & inhibidores , Modelos Animales de Enfermedad , Expresión Génica/efectos de los fármacos , Imiquimod , Inmunidad/efectos de los fármacos , Inflamación/genética , Interleucina-17/sangre , Masculino , Ratones , Psoriasis/inducido químicamente , Psoriasis/patología , Quinolonas/farmacología , ARN Mensajero/metabolismo , Esfingosina/biosíntesis , Proteína 1 Supresora de la Señalización de Citocinas , Células Th17
20.
Mol Med Rep ; 19(1): 609-616, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30431127

RESUMEN

Graft-vs.-host disease (GVHD) is a severe and potentially life-threatening complication of hematopoietic stem cell transplantation. Approximately 50% of patients exhibiting GVHD will not benefit from conventional steroid treatment. Although several second­line treatments are available for these patients, their prognoses remain poor due to the increased risk of infection, immunosuppression-mediated toxicity and incomplete GVHD remission, which occurs in the majority of cases. Mesenchymal stem cells (MSCs), a multipotent cell population, possess broad immunosuppressive activity and are a reportedly effective treatment of GVHD. However, the therapeutic effects of conditioned medium from MSCs on GVHD have not been demonstrated. In the present study, the efficacy of conditioned medium from human palatine tonsil­derived MSCs (T­MSC­CM) was validated against GVHD in mice. The suppressive function of T­MSC­CM on immune cell chemotaxis was confirmed in vitro. A systemic infusion of T­MSC­CM in mice with GVHD resulted in prolonged survival, rapid recovery from weight loss and reduced pathological damage in numerous GVHD­targeted organs. Furthermore, lymphocyte gene expression was significantly downregulated in GVHD mice administered T­MSC­CM. These results indicate that T­MSC­CM is a promising cellular agent to prevent or treat transplantation­associated complications such as GVHD.


Asunto(s)
Medios de Cultivo Condicionados/farmacología , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Tonsila Palatina/citología , Animales , Células Cultivadas , Femenino , Enfermedad Injerto contra Huésped/etiología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA